- 7 -

AVD-XXXX

	Rapporteur Meeting of Question 13/16
	AVD-XXXX

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2009-2012
	STUDY GROUP 16

	
	Original: English

	Question(s):
	13/16
	Seoul, 13-17 April 2009

	RAPPORTEUR MEETING DOCUMENT

	Source:
	Brazil

	Title:
	Additional IPTV Modules for H.IPTV-MAFR.14 Lua for IPTV

	Purpose:
	Proposal

Summary

This contribution proposes some additional modules for the scripting language Lua, in order to extend its functionality to support common IPTV Services.
1 Introduction

The Draft New Recommendation on the scripting language LUA for IPTV Services, H.IPTV-MAFR.14, was created at the last Study Group 16 Meeting, held in Geneva from 27th of January to 06th of February 2009 (the temporary document TD-140r1/WP2 contains the current draft).

The initial draft contains only the specification of the LUA scripting language. This contribution adds some modules to extend Lua´s functionality.
2 Discussion

The purpose of this contribution is to allow the scripting language Lua to support specific functionalities relevant for IPTV Services.

It is proposed to include in Draft Recommendation H.IPTV-MAFR.14 – Lua for IPTV Services new modules that will give Lua support to common IPTV Services functionalities.

The following Lua modules are proposed:

a) Module PVR, which adds support for PVR functionalities;

b) Module VoD, which adds support to video on demand functionalities;

c) Module SDC, which adds support to service discovery functionalities;

d) New Classes to be included in the Existing Event Module to support smartcard and PVR events.

3 Proposal

Create a new chapter in the current draft of H.IPTV-MAFR.14 to include the following text on the referred modules.

--------------------Beginning of Proposed Text--------------------

7 Lua API extensions for IPTV Services

7.2 Module Event

The following classes are proposed to be included in the existing Event module (see Section 7.2 of ITU-T H.761):

smartcard Class

evt = {class = “smartcard”, slot:number, eventId:number }

· slot is the number of the smartcard slot the event refers to

· eventId is the type of event. It can be:

0 - CARD_INSERTED. Event when a card has been inserted

1 - CARD_MUTE. Event when a card is in mute

2 - CARD_NOT_PRESENT. Event when no card is present

3 - CARD_REMOVED. Event when a card is removed

4 - CARD_TERMINAL_REMOVED. Event when the card terminal is removed

pvr Class

evt = {class = “pvr”, eventId: number}

· eventId can be:

-3 - PVR_ERROR_PERMISSION_DENIED

-4 - PVR_ERROR_NOT_ENOUGH_SPACE

-10 - PVR_ERROR_UNKONW

5 - PVR_EVENT_5MIN_START – indicates a recording starts in 5 minutes

6 - PVR_EVENT_RECORD_STOP – indicates the end of a recording operation

7.4 Module PVR

Constructors

pvr:new (filename: string) -> pvr: object

Arguments

Filename: Filename path

Return values

pvr
New Pvr object

Description

Returns a new pvr object, which is used to control the PVR functionality. If an error occurs the pvr object is returned with the attribute attrError different than 0 and all attempts to call methods of this object will return the error PVR_ERROR_CREATE.

Attributes

pvr:attrError() -> errorCode: number

Arguments

none

Return values

errorCode – The error code. The possible values are:

-1 - PVR_ERROR_CREATE

-2 - PVR_ERROR_DEVICE_NOT_PRESENT

-3 - PVR_ERROR_PERMISSION_DENIED

-4 - PVR_ERROR_NOT_ENOUGH_SPACE

-5 - PRV_ERROR_UNKOWN_SERVICEID

-6 - PVR_ERROR_INVALID_DATE_TIME

-7 - PVR_ERROR_INVALID_OPERATION_ID

-8 - PVR_ERROR_CANCELLING_OPERATION

-10 - PVR_ERROR_UNKOWN

Description:

Returns an error code representing an error in the last PVR operation

Primitives

pvr:schedule (date, time, length, serviceId: number) -> operationId: number

Arguments

date: date when the operation shall start

time: time when the operation shall start

length: length of recording operation in minutes

serviceId: service Id that shall be recorded

If date and time are 0 then recording start immediately. This can be also used for time shifting operation where the playback media becomes the recorded file instead of the received transport stream.

Return values

operationId representing the pvr record. It may also indicate an error if the operation failed. The possible errors are:

PVR_ERROR_INVALID_DATE_TIME

PVR_ERROR_UNKNOWN_SERVICEID

PVR_ERROR_PERMISSION_DENIED

PVR_ERROR_UNKOWN

Description

Schedule a PVR operation

pvr:getList() -> pvrList: table[]

Return values

Table containing all active pvr operations

pvrList = {

 {

 pvrOperationId

= <number>,

 startDate
= <number>,

 startTime
= <number>,

 length

= <number>,

 serviced

= <number>,

 }

Description

List all scheduled pvr operations

pvr:cancel (pvrOperationId: number) -> errorCode: number

Arguments

pvrOperationId – id of the pvr operation to be canceled

Return values

errorCode
representing an error in the cancel operation. The possible values are:

PVR_ERROR_INVALID_OPERATION_ID

PVR_ERROR_CANCELLING_OPERATION

PVR_ERROR_PERMISSION_DENIED

PVR_ERROR_UNKNOWN

Description

Cancel a scheduled PVR operation

7.4 Module VoD

Support to RSTP or other protocol to control the VoD stream. Support to DRM and authentication for VoD services.

(TBD)
7.6 Module Service Discovery

For detailed information about Service Discovery Mechanisms please refer to H.IPTV-SDC – “Mechanisms for Service Discovery up to Consumption for IPTV Services”. This module is responsible for discovering the available Service Providers and their respective services.

Constructors

sdc:new() -> sdc:object

Arguments

none

Return values

sdc Sdc representing the sdc object

Description

Returns a new sdc object, which is used to control the Service Discovery functionality.

Primitives

sdc:getServiceProviders() -> serviceprovider: table[]

Arguments

none

Return values

serviceprovider
Array of service providers found. If operation timed out then serviceprovider will be nil.

 serviceprovider = {

 {

 uri = <string>,

 dns = <string>,

 tname = <string>,

 description = <string>,

 logoUri

 = <string>,

 recordVer
 = <number>,

 serviceSummary[] = {

 serviceType = <number>,

-- only one of the following addresses shall be filled in

 pushAddress = <string>,

-- Multicast location of the "Detailed Service Offer"

 pullUrl = <string>,

-- Unicast location of the "Detailed Service Offer"

 portalUrl = <string>,

-- URL for the portal to discover the service details using a Web-based solution

 },

 },

 }

serviceType can have the following values:

0 - Linear TV

1 - Package

2 - Content Guide

3 - Service from other service provider

4 - E-book

5 - SMS Messaging

6 – Email

Description

Find all Service Providers in the network and returns a brief summary of available services

sdc:getLinearTV(serviceprovider) -> linearTV: object[]

Arguments

serviceprovider - table representing the serviceprovider from which the LinearTV detailed services will be acquired

Return values

linearTV
array of objects used to get detailed information about LinearTV services. linearTV object is described in the next module.

Description

Find detailed information about Linear TV Services. If operation timed out then return object will be nil.

sdc:getPacketServices(serviceprovider) -> packetServices: object[]

Arguments

serviceprovider - table representing the serviceprovider from which the detailed packetServices will be acquired

Return values

packetServices
array of objects used to get detailed information about packetServices. PacketServices Module is TBD.
Description

Find detailed information about packet services. If operation timed out then return object will be nil.

sdc:getContentGuide(serviceprovider) -> contentguide: object[]

Arguments

serviceprovider - table representing the serviceprovider from which the contentguide detailed services will be acquired

Return values

contentguide

array of objects used to get detailed information about contentguide services. ContentGuide Module is TBD.
Description

Find detailed information about content guide services. If operation timed out then return object will be nil.

sdc:getThirdPartyServices(serviceprovider) -> thirdparty: object

Arguments

serviceprovider - table representing the serviceprovider from which the third party detailed services will be acquired

Return values

thirdparty

array of objects used to get detailed information about third party services. ThirParty Module is TBD.
Description

Find detailed information about third party services. If operation timed out then return object will be nil.

sdc:getOtherServices(serviceprovider) -> generalServices: object

Arguments

serviceprovider - table representing the serviceprovider from which the other services details will be acquired

Return values

generalServices

array of objects used to get detailed information about other services. GeneralServices Module is TBD.
Description

Find detailed information about other services like SMS, Email, e-newspaper, etc. If operation timed out then return object will be nil.

7.6.1 Module LinearTV

linearTV:getElements() -> tvElements:table[]

Return Values

tvElements
Table of information elements of the LinearTV service.
 tvElements = {

 {

 serviceHostId

= <string>,

 networkId
 = <number>,

 tsId

= <number>,

 serviceId

= <number>,

 maxBitRate
= <number>, -- Max bitrate in kbits/s

 serviceLocation
= <string>,

 distributionType
= <number>, -- 0 multicast, 1 unicast

 streamType

= <number>, -- 0 Full SI stream, 1 basic SI stream

 location

= <table[]>

 audiocodec

= <number>,

 videocodec
 = <number>,

}

 location = {

 countryCode
 = <string>, -- ISO 3166 three digits

 regionCode
 = <string[]>, -- array of region codes related to the country

}

Description

Get the information elements about the LinearTV service.

linearTV:getMulticastLocation() -> tvMulticastLocation:table[]

Return values

tvMulticastLocation
Table of multicast elements of the LinearTV services found. If the service is of type unicast this table will be nil.

 tvMulticastLocation = {

 {

 multicastIp

= <string>,

 multicastPort
 = <number>,

 multicastSourceIp
= <string>,

 streamType

= <number>, -- 0 RTP, 1 UDP

 multiplexMode

= <number>, -- 0 MPEG2, 1 – Time-stamped MPEG2

}

Description

Get the multicast information about the LinearTV service

linearTV:getFec() -> tvFec:table[]

Return values

tvFec

Table of FEC information about the LinearTV services found. If the service is of type unicast this table will be nil.

 tvFec = {

 {

 multicastFecIp

= <string>,

 multicastFecPort
= <number>,

 multicastFecSourceIp
= <string>,

 multicastFecUdpPort

= <number>,

}

Description

Find detailed information about FEC on multicast delivery

linearTV:getEnhancedFec(country, region: string) -> tvEnhancedFec:table[]

Arguments

country – country code for the enhanced FEC layer

region – region code for the enhanced FEC layer

Return values

tvEnhancedFec

Table of enhanced FEC information about the LinearTV services found. If the service is of type unicast this table will be nil.

 tvFec = {

 {

 multicastFecIp

= <string>,

 multicastFecPort
= <number>,

 multicastFecSourceIp
= <string>,

 multicastFecUdpPort

= <number>,

}

Description

Find detailed information about FEC on multicast delivery

7.6.2 Module Packet Services

(TBD)

7.6.3 Module Content Guide

(TBD)

7.6.4 Module Third Party

(TBD)
7.6.5 Module General Services

(TBD)
--------------------End of Proposed Text--------------------

	Contact:
	Humberto Ribeiro
FUCAPI
Brazil
	Tel: +55 92 91239347

Email: humberto.ribeiro@fucapi.br

