- 2 –

ITU Telecommunication Standardization Sector
Document AVD-2808
Study Group 16

Q.2,3,4,5,21,22,24,25, and 29/16 Rapporteur Meeting

Geneva, 28 November - 2 December 2005
Question(s):
 Q2/16
Source*:
Cisco Systems
Title:

Modifications to the H.323 Alternate Gatekeeper Fallback enhancement
Purpose:
Proposal

Introduction

This is an enhancement to the AVD-2720 H.323 Alternate Gatekeeper “Fall Back” Enhancement proposal. In AVD-2720 the rehoming procedures are initiated by the endpoint. This proposal introduces rehoming procedures which are initiated by the gatekeeper.

The main advantage of endpoint based rehoming is that there is no need for Gatekeeper support. But the main disadvantage endpoint based rehoming is the huge GRQ traffic that will be generated for querying if the primary Gatekeeper is active or not. In Gatekeeper based rehoming the Gatekeeper would send the GRQs to check if the primary Gatekeeper is active or not, on behalf of the endpoints. The number of GRQs that needs to be send in the gatekeeper based rehoming would be very insignificant compared to the endpoint based rehoming.
Scope

The proposal allows the gatekeeper to initiate the rehoming procedure instead of endpoint initiating rehoming thereby reducing the GRQ traffic in the network.

Procedures

The assigned gatekeeper for an endpoint will be known by the endpoint through GCF, RCF, ACF, UCF, DCF or IRQ RAS message or through some mechanism outside the scope of the protocol. When the assigned gatekeeper for the endpoint becomes unresponsive the endpoint registers with the alternate gatekeeper. During the registration with the alternate gatekeeper the endpoint will send its assigned gatekeeper information in assignedGatekeeper field of GRQ or RRQ RAS messages. The endpoints assigned gatekeeper may also be known to the gatekeeper through some mechanisms outside the scope of the protocol, in which case endpoint support is not needed for gatekeeper based rehoming. The alternate gatekeeper would start sending GRQ messages to the endpoints assigned gatekeeper to check if it’s active or not. When the alternate gatekeeper gets back a GCF from the assigned gatekeeper, it would send an URQ to the endpoint with reason “registerWithAssignedGK”. The endpoint would then re-home to its assigned gatekeeper.

Since there are two mechanisms for rehoming, one involving the endpoint and one involving the Gatekeeper, there are three combinations to consider:
1) Endpoint supports rehoming, gatekeeper also supports rehoming - in this case the endpoint will send supportAssignedGK field in the GRQ and RRQ. The gatekeeper makes the final decision on which of the two mechanisms is to be used for rehoming and sends back its decision in rehomingModel field of the GCF and RCF. In such a network there would be a mixing of gatekeeper based and endpoint based rehoming. The rehomingModel specified by the currently registered gatekeeper should be used by the endpoint.
 Note: the rehomingModel will be either endpointbased or gatekeeperbased
2) Endpoint does not support rehoming, gatekeeper does support –The gatekeeper needs to know the endpoints assigned gatekeeper through some mechanism outside the protocol (example some common database can store the endpoint – assigned gatekeeper combination). Only gatekeeper based rehoming works in such a network.
3) Endpoint supports rehoming, gatekeeper does not support – in this case the endpoint will send supportAssignedGK field in the GRQ and RRQ, but the gatekeeper will not send back any rehoming related fields. The endpoint should know its assigned gatekeeper through some mechanism outside the scope of the protocol. Only endpoint based rehoming will work in such a network.

The above scenarios should be added to section 7.2.6.1 of AVD-2774 – H323 version 6 as proposed below.
Changes in text from AVD-2774 – H323 version 6
7.2.6.1
Assigned gatekeeper procedures

The Assigned Gatekeeper is an optional extension of the Alternate Gatekeeper procedures above. The combination of these two procedures provides a more robust redundancy scheme allowing the endpoint to “fail over” to one of its Alternate Gatekeepers when its Assigned Gatekeeper becomes unresponsive, and then to “re-home” to its Assigned Gatekeeper when it becomes responsive again.

The assignedGatekeeper field shall only be included if the alternateGatekeeper field is also present, even if the alternateGatekeeper list is empty. If the endpoint supports the Assigned Gatekeeper procedures defined in this clause, it shall include the supportsAssignedGK field in its GRQ and RRQ messages.

Only one Gatekeeper may be designated as the endpoints Assigned Gatekeeper at any time. The address of the Assigned Gatekeeper is communicated to the endpoint in the assignedGatekeeper field of GCF/GRJ, RCF/RRJ, ACF/ARJ and UCF/URJ messages. If the Gatekeeper does not include the assignedGatekeeper field, or returns an empty assignedGatekeeper field, the endpoint may treat its current Gatekeeper as its Assigned Gatekeeper. This allows endpoints to implement the re-homing mechanism even if the Gatekeeper does not explicitly support the Assigned Gatekeeper procedures. However, in order to prevent an endpoint from homing to every alternate Gatekeepers with which it might communicate, once the assignedGatekeeper value is assigned, explicitly or implicitly, the endpoint shall not assume that subsequent absent assignedGatekeeper fields shall indicate that its Gatekeeper is now the new Assigned Gateekeeper. In the event the endpoint is configured with its Gatekeeper address via some a priori means, the endpoint shall treat this Gatekeeper as its Assigned Gatekeeper by default. In the event the endpoint uses the multicast GRQ mechanism to dynamically discover an available Gatekeeper, the Gatekeeper which responds with a GCF shall be the endpoints Assigned Gatekeeper by default. If more than one Gatekeeper responds, and none of them include an assignedGatekeeper address, the endpoint may choose the Gatekeeper it wants to use as its default Assigned Gatekeeper. If more than one responds with an assignedGatekeeper address, the endpoint may choose the response from which to extract the assignedGatekeeper address.

The address of the assignedGatekeeper may change over time. Any time the endpoint receives an assignedGatekeeper address that is different than its current assignedGatekeeper address, the endpoint shall accept the address as its new Assigned Gatekeeper and immediately begin following the re-homing procedures described in this clause to register with it. This allows the administrator an automated method of changing the endpoints Assigned Gatekeeper without having to reprogram the endpoints. The method used by the Gatekeeper to store this endpoint-Gatekeeper association is outside the scope of this recommendation, but it is assumed that the Gatekeeper maintains some sort of database to store this information and provides some sort of interface for the administrator to provision these associations.

The re-homing functionality may be provided by the Gatekeeper or the Endpoint, as described below. The endpoint that use the model specified by the Gatekeeper with which it is currently registered. If no model is specified by the Gatekeeper, the default model shall be the endpointBased model.
1) Gatekeeper Based

When the endpoint registers with the alternate gatekeeper it specifies its current assigned gatekeeper in the RRQ. The alternate gatekeeper may send GRQs to find out if the Endpoint’s assigned gatekeeper is active. Upon receiving a GCF from the assigned gatekeeper, it sends a URQ with the assigned gatekeeper field information in the alternateGK field, the URQ reason should be set to registerWithAssignedGK. Using this model, the Endpoint shall not poll its assigned Gatekeeper by sending periodic GRQ messages of its own.
2) Endpoint Based

When an endpoint’s Assigned Gatekeeper becomes unresponsive, the endpoint shall begin a polling mechanism by sending periodic GRQs to its Assigned Gatekeeper in an effort to re-home as soon as possible. Once the Assigned Gatekeeper begins responding (i.e. the endpoint receives a GCF to one of these GRQs) the endpoint shall attempt to re-home to its Assigned Gatekeeper by sending it an RRQ. If the endpoint is registered to another Gatekeeper when it attempts to initiate this re-homing procedure, the endpoint does not need to send a URQ to its current Gatekeeper.

The “Gatekeeper Based” re-homing model has an advantage that it will reduce GRQ traffic as compared to the “Endpoint Based” re-homing model. If both the endpoint and Gatekeeper supports re-homing then the Gatekeeper shall specify which of the two models to use in the rehomingModel of the GCF and RCF fields.

The endpoint shall assume that when it re-homes, the Assigned Gatekeeper is prepared to accept requests relating to existing calls and the Assigned Gatekeeper shall be prepared to handle such messages. This permits active calls and outstanding messages between the endpoint and the current Gatekeeper to continue during the re-homing procedure. If the endpoint receives a response to an outstanding request from a Gatekeeper after re-homing to its Assigned Gatekeeper, the endpoint shall accept the response and proceed normally. After re-homing, though, all subsequent newly generated or re-transmitted messages shall be directed to the Assigned Gatekeeper to which it is now registered. During this transition, there may be a short period of time in which the Gatekeepers have not yet synchronized on the state of the endpoints registration and both Gatekeepers send IRQs to the endpoint to determine the status of the call. The endpoint shall respond to IRQs only from the Assigned Gatekeeper to which it is now registered.

If the endpoint receives a reject message from its Gatekeeper, such as a GRJ, RRJ or ARJ (or receives a URQ from its Gatekeeper) containing a list of Alternate Gatekeepers and the alternateGKisPermanent field is set to TRUE, the endpoint shall follow the Alternate Gatekeeper procedures as described in clause 7.2.6 by assuming that the needToRegister field is TRUE and sending an RRQ to one of its Alternate Gatekeepers. However, the endpoint shall also immediately begin the polling mechanism described above in an effort to re-home to its Assigned Gatekeeper as soon as possible. If the Gatekeeper wants to permanently redirect the endpoint to an Alternate Gatekeeper and does not want the endpoint to re-home to it, it should provide the endpoint with a new assignedGatekeeper address or remove the Assigned Gatekeeper value by sending an empty assignedGatekeeper field.

Any time the endpoint receives a new assignedGatekeeper address, it should ignore the needToRegister field and assume that the value is TRUE. If the alternateGKisPermanent field is set to FALSE, and the address of the assignedGatekeeper field is different than the endpoints current Assigned Gatekeeper value, the endpoint shall ignore the fact that the alternateGKisPermanent field was set to FALSE and shall retransmit the message to its new Assigned Gatekeeper. Only if that Gatekeeper does not respond shall the endpoint proceed to follow the Alternate Gatekeeper procedures described in clause 7.2.6 by retransmitting the message to its list of Alternate Gatekeepers. Since a new Assigned Gatekeeper value was provided, it shall immediately begin the polling mechanism described in this clause in an effort to re-home to the new Assigned Gatekeeper. The endpoint may perform both of these actions in parallel.
If at any time the Gatekeeper wishes to clear the endpoint’s Assigned Gatekeeper value, it may send the endpoint an empty assignedGatekeeper field. The endpoint should reset its Assigned Gatekeeper to a default value again. The endpoint may then use the Gatekeeper it is currently registered to as its new default Assigned Gatekeeper or may go back to using the Assigned Gatekeeper it discovered during its initialization sequence (i.e. its a priori Gatekeeper or the Gatekeeper it discovered via the multicast method) as its default Assigned Gatekeeper.
The Gatekeeper may include the assignedGatekeeper field in any GCF, RCF, ACF, UCF, DCF or IRQ message. This is required because the Alternate Gatekeeper may need to accept the endpoints request to register or place or call while simultaneously communicating to the endpoint who its Assigned Gatekeeper is. If the address provided is different than the endpoints current Assigned Gatekeeper value, the endpoint shall immediately begin the polling mechanism described above in an attempt to re-home to its new Assigned Gatekeeper.

The Gatekeeper may optionally include a gatekeeperIdentifier value in the assignedGatekeeper field. This is useful when the Assigned Gatekeeper manages multiple zones and hence has multiple gatekeeperIdentifiers configured. If the gatekeeperIdentifier sent by the endpoint does not match any of the Gatekeepers configured identifiers, the Gatekeeper shall return a reject message. The reject message may include the correct gatekeeperIdentifier value in the assignedGatekeeper field in which case the endpoint should retransmit the request with the correct gatekeeperIdentifier value. Alternatively, the Gatekeeper may provide an empty gatekeeperIdentifier value in the assignedGatekeeper field, in which case the endpoint should retransmit the request with an empty gatekeeperIdentifier value.
ASN changes
RehomingModel ::= CHOICE
{

gatekeeperBased NULL,

endpointBased NULL
}
GatekeeperRequest ::= SEQUENCE --(GRQ)

{

requestSeqNum RequestSeqNum,

protocolIdentifier ProtocolIdentifier,

nonStandardData NonStandardParameter OPTIONAL,

rasAddress TransportAddress,

endpointType EndpointType,

gatekeeperIdentifier GatekeeperIdentifier OPTIONAL,

callServices QseriesOptions OPTIONAL,

endpointAlias SEQUENCE OF AliasAddress OPTIONAL,

...,

alternateEndpoints SEQUENCE OF Endpoint OPTIONAL,

tokens SEQUENCE OF ClearToken OPTIONAL,

.

.

supportsAssignedGK BOOLEAN

assignedGatekeeper AlternateGK OPTIONAL,
}
GatekeeperConfirm ::= SEQUENCE --(GCF)

{

requestSeqNum RequestSeqNum,

protocolIdentifier ProtocolIdentifier,

nonStandardData NonStandardParameter OPTIONAL,

gatekeeperIdentifier GatekeeperIdentifier OPTIONAL,

rasAddress TransportAddress,

...,

alternateGatekeeper SEQUENCE OF AlternateGK OPTIONAL,

authenticationMode AuthenticationMechanism OPTIONAL,

.

.

assignedGK AlternateGK OPTIONAL,

rehomingModel RehomingModel OPTIONAL
}
RegistrationRequest ::= SEQUENCE --(RRQ)

{

requestSeqNum RequestSeqNum,

protocolIdentifier ProtocolIdentifier,

nonStandardData NonStandardParameter OPTIONAL,

discoveryComplete BOOLEAN,

callSignalAddress SEQUENCE OF TransportAddress,

rasAddress SEQUENCE OF TransportAddress,

terminalType EndpointType,

terminalAlias SEQUENCE OF AliasAddress OPTIONAL,

gatekeeperIdentifier GatekeeperIdentifier OPTIONAL,

endpointVendor VendorIdentifier,

...,

alternateEndpoints SEQUENCE OF Endpoint OPTIONAL,

.

.

supportsAssignedGK BOOLEAN

assignedGatekeeper AlternateGK OPTIONAL,
}
RegistrationConfirm ::= SEQUENCE --(RCF)

{

requestSeqNum RequestSeqNum,

protocolIdentifier ProtocolIdentifier,

nonStandardData NonStandardParameter OPTIONAL,

callSignalAddress SEQUENCE OF TransportAddress,

terminalAlias SEQUENCE OF AliasAddress OPTIONAL,

gatekeeperIdentifier GatekeeperIdentifier OPTIONAL,

endpointIdentifier EndpointIdentifier,

...,

alternateGatekeeper SEQUENCE OF AlternateGK OPTIONAL,

timeToLive TimeToLive OPTIONAL,

.

.

assignedGatekeeper AlternateGK OPTIONAL,

rehomingModel RehomingModel OPTIONAL
}
UnregistrationRequest ::= SEQUENCE --(URQ)

{

requestSeqNum RequestSeqNum,

callSignalAddress SEQUENCE OF TransportAddress,

endpointAlias SEQUENCE OF AliasAddress OPTIONAL,

nonStandardData NonStandardParameter OPTIONAL,

endpointIdentifier EndpointIdentifier OPTIONAL,

...,

alternateEndpoints SEQUENCE OF Endpoint OPTIONAL,

.

.

assignedGatekeeper AlternateGK OPTIONAL,
}
UnregRequestReason ::= CHOICE

{

reregistrationRequired NULL,

ttlExpired NULL,

securityDenial NULL,

undefinedReason NULL,

...,

maintenance NULL,

securityError SecurityErrors2,

registerWithAssignedGK NULL
}
AdmissionConfirm ::= SEQUENCE --(ACF)

{

requestSeqNum RequestSeqNum,

bandWidth BandWidth,

callModel CallModel,

destCallSignalAddress TransportAddress,

irrFrequency INTEGER (1..65535) OPTIONAL,

nonStandardData NonStandardParameter OPTIONAL,

...,

destinationInfo SEQUENCE OF AliasAddress OPTIONAL,

.

.

assignedGatekeeper AlternateGK OPTIONAL,
}
DisengageConfirm ::= SEQUENCE --(DCF)

{

requestSeqNum RequestSeqNum,

nonStandardData NonStandardParameter OPTIONAL,

...,

tokens SEQUENCE OF ClearToken OPTIONAL,

cryptoTokens SEQUENCE OF CryptoH323Token OPTIONAL,

.

.

assignedGatekeeper AlternateGK OPTIONAL,
}
UnregistrationConfirm ::= SEQUENCE --(UCF)

{

requestSeqNum RequestSeqNum,

nonStandardData NonStandardParameter OPTIONAL,

...,

tokens SEQUENCE OF ClearToken OPTIONAL,

.

.

assignedGatekeeper AlternateGK OPTIONAL,
}
InfoRequest ::= SEQUENCE --(IRQ)

{

requestSeqNum RequestSeqNum,

callReferenceValue CallReferenceValue,

nonStandardData NonStandardParameter OPTIONAL,

replyAddress TransportAddress OPTIONAL,

...,

callIdentifier CallIdentifier,

.

.

assignedGatekeeper AlternateGK OPTIONAL,
}
DisengageReject ::= SEQUENCE --(DRJ)

{

requestSeqNum RequestSeqNum,

rejectReason DisengageRejectReason,

nonStandardData NonStandardParameter OPTIONAL,

...,

altGKInfo AltGKInfo OPTIONAL,

.

.

assignedGatekeeper AlternateGK OPTIONAL,
}
AdmissionRejectReason ::= CHOICE

{

calledPartyNotRegistered NULL, -- cannot translate address

invalidPermission NULL, -- permission has expired

requestDenied NULL, -- no bandwidth available

undefinedReason NULL,

callerNotRegistered NULL,

routeCallToGatekeeper NULL,

invalidEndpointIdentifier NULL,

resourceUnavailable NULL,

...,

securityDenial NULL,

.

.

assignedGatekeeper AlternateGK OPTIONAL,
}
UnregistrationReject ::= SEQUENCE --(URJ)

{

requestSeqNum RequestSeqNum,

rejectReason UnregRejectReason,

nonStandardData NonStandardParameter OPTIONAL,

...,

altGKInfo AltGKInfo OPTIONAL,

tokens SEQUENCE OF ClearToken OPTIONAL,

.

.

assignedGatekeeper AlternateGK OPTIONAL,
}
RegistrationReject ::= SEQUENCE --(RRJ)

{

requestSeqNum RequestSeqNum,

protocolIdentifier ProtocolIdentifier,

nonStandardData NonStandardParameter OPTIONAL,

rejectReason RegistrationRejectReason,

gatekeeperIdentifier GatekeeperIdentifier OPTIONAL,

...,

altGKInfo AltGKInfo OPTIONAL,

tokens SEQUENCE OF ClearToken OPTIONAL,

.

.

assignedGatekeeper AlternateGK OPTIONAL,
}
GatekeeperReject ::= SEQUENCE --(GRJ)

{

requestSeqNum RequestSeqNum,

protocolIdentifier ProtocolIdentifier,

nonStandardData NonStandardParameter OPTIONAL,

gatekeeperIdentifier GatekeeperIdentifier OPTIONAL,

rejectReason GatekeeperRejectReason,

...,

altGKInfo AltGKInfo OPTIONAL,

tokens SEQUENCE OF ClearToken OPTIONAL,

.

.

assignedGatekeeper AlternateGK OPTIONAL,
}
	Contact:
	Ivan Varghis and Jayaseelan

Cisco Systems (India) Private Limited

	Tel: + 91 80 51033000
Email: ivarghis@cisco.com , jarulsel@cisco.com

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

