- 15 -

ITU - Telecommunication Standardization Sector Temporary Document XX (WP 2/16)
STUDY GROUP 16
Question(s):
13/16

SOURCE*:
EDITOR

TITLE:
H.225.0 Annex G – Version 1

Date:
22 March 2000

Abstract

This document contains the text for version 1 of the H.225.0 Annex G recommendation. Revision marks reflect changes relative to decided version 1 of H.225.0 Annex G (version1 was decided at the Santiago meeting, May 1999). The changes include the following:

(1) Editorial corrections

(2) Integration of the following changes from the H.323 Implementers Guide (pl-92 from Geneva, Feb. 2000)

· section 6.10.1 from Implementers Guide - changes related to Multiple Usage Indications for the Same Call – affects sections 1.7.4.1, 1.7.4, 1.8.2.28

· section 6.10.2 from Implementers Guide - changes related to Identifying the Terminated Service Relationship – affects sections 1.8.2, 1.8.2.6

· section 6.10.3 from Implementers Guide - changes related to the Need to Provide a replyAddress when using Bi-directional Connections - affects section 1.8.2

· section 6.10.4 from Implementers Guide - changes related to Sending UsageIndications without a Service Relationship – affects sections 1.7.4, 1.8.2.5

· section 6.10.5 from Implementers Guide - changes to the ASN.1 – affects section 2

· section 6.10.6 from Implementers Guide – changes related to a Clarification Relating to Service Relationships – affects section 6.8.2.4.5

· section 6.10.7 from Implementers Guide – changes related to Corrections for the Usage Indication Rejection – affects section 1.8.2.30

· section 6.10.8 from Implementers Guide – changes related to Corrections to Tables and Diagrams – affects table in section 1.9.1 , figure in section 1.9.1.1, table in section 1.9.2 , figure in section 1.9.2.1

1
ANNEX G - Communication Between Administrative Domains

1.1
Scope

It is expected that the overall H.323 network will consist of smaller subsets of equipment organized in some manner such as by administrative domain. Because of the potentially large numbers of H.323 equipment that will exist in H.323 networks, an efficient protocol is needed to allow calls to be completed between administrative domains. The most elementary example is for a user (an endpoint) in one administrative domain to reach a user (an endpoint) serviced by another administrative domain. While the H.225.0 RAS protocol can provide many of the needs of communication between administrative domains, it is neither complete nor efficient for this purpose.

This annex describes methods to allow address resolution, access authorization and usage reporting between administrative domains in H.323 systems for the purpose of completing calls between the administrative domains. An administrative domain exposes itself to other administrative domains through a type of logical element known as a border element. A border element may be co-located with any other entity (for example, with a gatekeeper). Annex G does not require an administrative domain to reveal details about its organization or architecture. Annex G does not mandate a specific system architecture within an administrative domain. Furthermore, Annex G supports the use of any call model (gatekeeper routed versus direct endpoint).

The general procedure is for border elements to exchange information regarding the addresses each administrative domain can resolve. Addresses can be specified in a general manner or in an increasingly specific manner. Additional information allows elements within an administrative domain to determine the most appropriate administrative domain to serve as the destination for the call. Border elements may control access to their exposed addresses, and require reports on the usage made during calls to those addresses.

Figure 1 indicates a number of references points representing signaling among various elements in an H.323 network. In this figure, the administrative domains are part of a global packet network without edges. Note that this figure is not an explicit definition of an H.323 system architecture, but is meant to illustrate signaling reference points.

[image: image1.wmf]border

element

border

element

gatekeeper

gatekeeper

gatekeeper

gatekeeper

A

B

B

C

B

B

C

Back End

services

D

D

D

D

Administrative Domain A

Administrative Domain B

Figure 1 - System Reference Points

The figure indicates the following reference points:

A – between border elements

B – between border element and gatekeepers

C – between gatekeepers

D – between H.323 elements and back end services (not in the scope of this Annex)

Reference point A is the focus of Annex G. Use of the protocol described in Annex G for communication between gatekeepers within an administrative domain is for further study. Reference point B is considered for further study since it is currently assumed that the border element will be colocated with some other H.323 element.

Section 1.9 provides some signaling examples which may aid understanding.

1.2
Definitions

Administrative domain
An administrative domain is a collection of H.323 entities administered by one administrative entity. An administrative domain can consist of one or more gatekeepers (that is, one or more zones).

Back-End Services
Back-End Services are functions such as user authentication or authorization, accounting, billing, rating/tariffing, etc. Back-end services and the protocol to exchange information with back-end services (if different than that in this Annex) are not in the scope of this Annex.

Border element
The border element is a functional element which supports public access into an administrative domain for the purposes of call completion or any other services that involve multimedia communication with other elements within the administrative domain. The border element controls the external view of the administrative domain. A border element communicates with other border elements using the protocol specified in this Annex. In addition, a border element may, depending on implementation, communicate with other entities within its administrative domain. This element may exist in combination with other H.323 elements, for example a combination of border element, gatekeeper, and gateway. An administrative domain may contain any number of border elements.

Clearing House
A service (possibly in the form of a border element) which can provide resolution for all addresses (i.e., a type of aggregation point).

1.3
Abbreviations

AD
Administrative domain

BE
Border element

CH
Clearing house

EP
Endpoint

GK
Gatekeeper

GW
Gateway

T
Terminal

1.4
References

1. ITU-T Recommendation H.225.0 Version 3 (1999), “Call Signaling Protocols and Media Stream Packetization for Packet Based Multimedia Communication Systems”

2. ITU-T Recommendation H.235 Version 1 (1998), “Security and Encryption for H Series (H.323 and Other H.245 Based) Multimedia Terminals”

3. ITU-T Recommendation H.323 Version 3 (1999), “Packet Based Multimedia Communications Systems

4. ITU-T Recommendation X.680 (1994), Information Technology – Abstract Syntax Notation One (ASN.1) Specification of Basic Notation”

5. ITU-T Recommendation X.680 Amendment 1 (1995), “Information Technology – Abstract Syntax Notation One (ASN.1) Specification of Basic Notation”, Amendment 1: Rules of Extensibility

6. ITU-T Recommendation X.691 (1994), “Information Technology – ASN.1 Encoding Rules – Specification of Packed Encoding Rules (PER)”

1.5
System Models

Annex G does not mandate a specific system architecture among administrative domains or within an administrative domain. The following subsections will provide some sample architectures, but these are to be viewed as illustrative rather than exhaustive.

In general, an administrative domain is viewed as consisting of any number of zones and any number of border elements. Remember that a border element is a functional element that may exist together with any other H.323 element. Figure 2 shows some examples of border element implementations in combination with other elements.

[image: image2.wmf]Gatekeeper

Border element

Gateway

Border element

Gatekeeper

Border element

Gateway

Figure 2 - Border Element Placement Examples

The relationship among administrative domains may be any of a variety of organizations. The following subsections indicate example relationships.

1.5.1
Hierarchical

Figure 3 shows a simple hierarchical arrangement among administrative domains. In such an arrangement, a border element in an administrative domain would consult a border element in an administrative domain higher in the hierarchy to resolve an address.

[image: image3.wmf]Administrative

domain A

Administrative

domain B

Administrative

domain C

Administrative

domain D

Figure 3 - Sample Hierarchical Organization

1.5.2
Distributed or Full Mesh

An entirely distributed or full mesh model is possible, as shown in Figure 4. In this example, a border element in each administrative domain communicates with border elements in the other known administrative domains.

[image: image4.wmf]Administrative

domain A

Administrative

domain C

Administrative

domain D

Administrative

domain B

Figure 4 - Sample Distributed Organization

1.5.3
Clearing House

An example of a clearing house arrangement is shown in Figure 5. In this arrangement, each administrative domain consults the clearing house to resolve addresses.

[image: image5.wmf]Clearing

house

Administrative

domain B

Administrative

domain C

Administrative

domain A

Administrative

domain D

Figure 5 - Sample Clearing House Organization

1.5.4
Aggregation Point

Figure 6 shows an example of an aggregation point. In this example, administrative domain B is an aggregation point that can provide address resolution for both itself and administrative domains C and D. As an example, administrative domain B may forward resolution requests from administrative domain A to administrative domain C, or may instruct administrative domain A to contact administrative domain C directly for certain destinations. If administrative domain B forwards a request from administrative domain A to administrative domain C, administrative domain B may cache administrative domain C’s response.

[image: image6.wmf]Administrative

domain A

Administrative

domain B

Administrative

domain C

Administrative

domain D

Figure 6 - Aggregation Point Example

1.5.5
Overlapping Administrative Domains

More than one administrative domain may be able to resolve a given address. For example, multiple administrative domains could contain gateways that can complete a call to a terminal in the GSTN. The selection of the appropriate destination administrative domain is the responsibility of the origination administrative domain. The algorithm employed to select the destination administrative domain is an implementation matter.

1.6
Addressing Conventions

In order to provide interoperability between domains it is important that the addressing formats sent in H.323 messages are understood by the receiving system. A border element shall support both the email-id and partyNumber (using PublicNumber with PublicTypeOfNumber of internationalNumber) types of AliasAddress. Note that this requirement implies support of H.225.0 V2 or later. When communicating with other border elements, only the email-id and partyNumber types of AliasAddress should be used in the destinationAddress field of an LRQ or SETUP message unless there has been prior agreement between the administrative domains concerned. For example, if a group of administrative domains have agreed on the interpretation of private local numbers then these numbers may be used in messages between them.

1.7
Operation

1.7.1
Address Templates and Descriptors

An address template (“template” for short) defines a set of AliasAddress identifiers, pricing information to complete calls to those addreses, and the protocol to be used in reaching addresses in that set. An administrative domain advertises templates to indicate the calls it can resolve. Templates are grouped together by an identifier known as a “descriptor”. Once a template is grouped by a descriptor, any change to a template under that descriptor implies a change to the descriptor “group”. Template information may allow the aggregation of addressing information if the addressing scheme is arranged in some hierarchical or routable manner (for example, a given zone might handle 1303538*, meaning all telephone numbers that begin with 1303538). (Note that since “*” is a meaningful character, the template actually includes an explicit field to indicate whether the address is a specific address or a wildcard address. These examples use “*” to indicate a wild card, but the actual representation in the template is through the explicit field.)

Template examples include:

“For 1 555 123 4567
send AccessRequest message to border element A”

“For 1 555 987 *
send AccessRequest message to border element B”

“For 1 555 987 6543
send Setup message to gateway X”

“For *@example.org
send AccessRequest message to border element A”

“For 1 *

send AccessRequest message to border element B”

“For private 31*

send AccessRequest message to border element C”

“For 44 171 112*”
doesn’t exist”

A border element obtains templates in these ways:

· static configuration

· receiving descriptors from other border elements in response to general requests

· receiving responses to specific queries

1.7.1.1
Static Configuration

A border element will maintain templates for all the zones for which it is responsible. These templates may be explicitly provisioned in the border element, or these templates may be formed by summarizing information obtained from gatekeepers within its domain. The border element may make this information available to other border elements via responses to requests. An administrative domain may choose the level of detail to be provided by its border elements. Examples include:

· A border element that wishes to hide internal structure might provide one descriptor (with an indication to send an AccessRequest message) which describes its whole zone and refers to a gatekeeper which will handle all incoming calls.

· A border element which does not care about revealing internal structure might provide a set of templates, each describing the gatekeeper for a zone within the domain.

· A border element which is on a firewall (or one using the gatekeeper routed model) might provide a template for the whole zone with an indication to send a Setup message.

· A border element with holes in its domain (because numbers have been moved to another administrative domain) provides templates marked “Send AccessRequest” which indicate the border element which should be used to contact the other administrative domain.

· A clearing house border element (such as one which has a complete copy of 44) might hold a template marked “Send Access Request” for each administrative domain within 44.

Border elements need not keep a copy of the whole database. If a border element does not hold a copy of the whole database then it should contain statically configured “Send AccessRequest” templates indicating a clearing house border element which will be used to resolve other queries.

1.7.1.2
Receiving Descriptors

A border element may request templates from another border element. The response to the request is decided by the border element from which the templates are being requested.

To request a transfer, the border element sends a DescriptorRequest message specifying the descriptors it wishes to receive. If the owning border element is able to transfer the descriptors, it responds with a DescriptorConfirmation message specifying all the templates.

The requesting border element may cache a copy of a template received in this manner until the template’s lifetime expires, at which point the border element should delete its copy of the template. If the owning border element changes its statically configured templates before their lifetime has expired then it shall send a DescriptorUpdate message to those border elements of which it is aware. A border element in receipt of a DescriptorUpdate message should delete, add, or change all indicated templates in its cache, or should request copies of the indicated descriptors from the owner.

An intermediate border element (a border element between the originating and destination administrative domains, such as a clearing house or aggregation point) may publish its own descriptors based on the descriptors it receives. For example, a clearing house may indicate itself as the contact for an AccessRequest message even though the descriptors it received from another border element indicate that other border element as the contact.

A border element may indicate in a template the requirement for an originator to receive permission to place a call into an administrative domain. When the callSpecific flag is set in a template and the message type indicates that an AccessRequest message shall be sent, the originator shall provide per-call information in the AccessRequest message. If a border element receives the AccessRequest message without per-call information and policy is to require per-call information, the border element shall reply with an AccessRejection message with a reason of needCallInformation.

A border element may send a DescriptorUpdate message to other known border elements, or the border element may multicast a DescriptorUpdate message. If a DescriptorUpdate message is multicast, the border element should consider the scope of the multicast. The DescriptorUpdate message can contain the descriptors that have changed. Alternatively, the Descriptor Update message may indicate only the identification of the descriptors that changed, allowing the recipient to query for the new information. If a large number of descriptors have changed, the information should be sent in multiple DescriptorUpdate messages so that a particular DescriptorUpdate message does not exceed the maximum transport packet size.

1.7.1.3
Receiving Responses to Specific Queries

A border element may send an AccessRequest message to another border element asking for the resolution of a fully qualified or partially qualified address. The AccessRequest is usually sent over unreliable transport (e.g., UDP), although it may be sent over reliable transport (e.g., TCP).

A border element in receipt of an AccessRequest searches its database and responds with the most specific template for the destination. If multiple templates satisfy the request then the border element shall return all matching templates. If the destination border element is actually responsible for the alias address specified, the border element will usually respond with a template indicating that either an AccessRequest or Setup message should be sent. If the destination border element is a clearing house, it will normally respond with a template indicating that the AccessRequest message should be sent.

The destination border element may also add templates to the response which it believes will be useful in the future. The addition of these templates should not make the response so large that the transport network will need to fragment it (e.g., 576 octets for IPv4 or 1200 octets for IPv6).

For example, a border element which is tightly coupled with a firewall may provide two templates in its response to AccessRequest messages: one template with a short lifetime (of a few minutes or seconds) specifying the location to which a Setup message should be sent, and additional templates specifying that AccessRequest messages should be sent to the border element for other AliasAddresses within the administrative domain.

A border element may cache a template received in an AccessConfirmation until its lifetime expires.

1.7.2
Discovery of a Border Element or Set of Border Elements

1.7.2.1
Static

A border element may have an administered set of other border elements which it may contact for address resolution. This administered set may be defined through a set of bilateral agreements between the administrative domains and other administrative domains.The administrative domains may optionally utilize the service of a clearing house.

1.7.2.2
Dynamic

On IP networks, Ownership of Email-ID style addresses is defined by the DNS system. Thus, in the absence of any better information, a border element may do a DNS SRV record lookup on the part of the email-ID to the right of the ‘@’ sign (for example, a DNS SRV lookup on _h2250-annex-g._udp.example.org for person@example.org). The response to this lookup should be used to synthesise a “Send AccessRequest” template which can be used during the resolution process. Templates synthesised from DNS requests should not be cached for longer than the lifetime provided in the DNS response

1.7.2.3
Other Methods

The use of other methods to locate another border element are for further study.

1.7.3
Resolution Procedures

1.7.3.1
Resolution Procedure Within Administrative Domain

When a border element is asked to resolve an AliasAddress (e.g., by a co-located gateway or gatekeeper), it finds matching templates in its cache .

If more than one template matches, appropriate templates are selected and sorted according to local policy. For example, templates may be first sorted by wildcard length (more specific templates are better), then sorted by the type of protocol specified (“Send Setup” is better than “Send AccessRequest”).

If multiple templates satisfy the request then the border element shall return all matching templates.

If the template selection procedure produces no templates marked as “Send Setup”, then the border element sends an AccessRequest message with a specific destination address to the address specified in the template. When it gets an answer from the border element it may store that in its cache and return to the requester the address to which to send the Setup message.

1.7.3.2
Resolution Procedure Between Administrative Domains

When a border element receives an AccessRequest it searches through the templates in its cache and finds those which match the address in the query.

If more than one template matches, they are first sorted by wildcard length (more specific templates are better). They are then sorted by the message type specified (“Send Setup” is better than “Send AccessRequest”). In each case all templates other than the most specific match are discarded.

If the matched templates are marked as “Send AccessRequest” then the border element may choose to forward the AccessRequest message to the border element(s) specified in the template(s), or may choose to return the templates as they are. If the hop counter in the received AccessRequest message has reached zero, then the border element cannot forward the AccessRequest message to another border element, but should instead return any matching templates. If the hop counter has reached zero and the border element has no information to provide in an AccessConfirmation, the border element should respond with an AccessRejection message indicating that the hop count was exceeded.

At this point, the border element may use a border element of a third administrative domain (e.g. a clearing house) to authorize the access request. To do that, it sends a ValidationRequest message, carrying access tokens supplied by the requesting border element in the AccessRequest. rights. The recepient border element validates the tokens and returns ValidationConfirmation.

The border element then returns an AccessConfirmation message containing the templates which it has found (these will have the same address and message type fields) and any other templates which it considers will be useful.

If multiple templates satisfy the request then the border element shall return all matching templates.

If the access request contains specific call information, then the returned templates are valid only for the call requested. This is used when an administrative domain wishes to grant access on a per call basis. In that case, the administrative domain may mandate the inclusion of call information per each AccessRequest sent to it. It does so, by setting a flag in the templates that refer to it.

1.7.4
Usage Information Exchange

Administrative domains may request other domains to provide them information about the usage of resources in specific calls. UsageIndication messages may be provided at any stage of the call. Also, multiple usage indications may be sent for the same call, each one with possibly more up to date information, or reporting on consecutive call segments or different media type usage. See section 1.7.4.1 for detail.
Usage Indications may be exchanged irrespective of whether the two border elements have a service relationship between them. However the policy of a border element may not allow such exchanges without a service relation. In such a case, the border element may reject the usage indication message, with an error code "noServiceRelationship".

UsageIndication requests shall be sent when a border element requires that, either in the templates for which it serves as contact, or by indicating that in either one of the UsageRequest, AccessRequest, ValidationRequest and ValidationConfirmation messages sent in the context of the call for which UsageIndication is required.
1.7.4.1

Multiple Usage Indications for the Same Call

Multiple Usage Indications for the same call provide increasingly more up to date information on the same media types, or usage information about new media types created in the same call. Also, since border elements may take over calls while being in progress, not all the Usage Indications necessarily originate from the same border element. The following rules define the semantics:

1. UsageIndication received with a usageCallStatus of callInProgress implies a subsequent UsageIndication with the same callIdentifier and senderRole should be received. If the recipient is configured for fault recovery it may choose to conclude after a configured time interval with no further UsageIndication messages, that a fault has occurred and recover whatever data it can from the received UsageIndication messages.

2. Subsequent UsageIndication messages with the same usageField ids should report a startTime matching the endTime of the previous message (although this may be impossible for an alternate border element). Recipients shall assume each report is for a distinct period. Other information in the usageField overrides the information received in previous messages with the same usageField id.

3. A border element should send a new Usage Indication for each change in the media type during the call, e.g., audio stopped and fax started, or a codec has changed. If multiple media types are engaged at the same time (e.g. audio & video) they should be reported in the same UsageIndication message.
1.8
Protocol

Messages in the Annex G protocol may be sent over an unreliable transport service (e.g., UDP) or a reliable transport service (e.g., TCP) to a well-known address . On IP networks, the well-known port 2099 should be used for both TCP and UDP, unless another port has been communicated to the sender. Border elements shall listen on both TCP and UDP ports.

When messages are sent over the reliable transport service, multiple messages may be sent within the boundaries defined by the reliable transport protocol data unit (PDU) as long as whole messages are sent. (In IP implementations, as outlined in H.225.0 Appendix D, this PDU is defined by TPKT.)

When using unreliable transport service, request messages may be retransmitted. The default value of the retransmission timer should determined by an adaptive delay sensitive method (such as the one used by the TCP protocol). Exponential backoff shall be used for subsequent retransmissions. The number of retransmissions shall not exceed 5. Responses shall not be retransmitted

In UDP IP implementations, messages shall also be prefixed with TPKT headers, to enable multiple messages per packet. The UDP packet length field shall hold the total length of the payload, including all the messages and their TPKT headers.

1.8.1
Security Considerations

When authentication, integrity, and encryption is desired for messages exchanged between border elements, the operation of IP security shall be followed as described in IETF RFC 1825 (“Security Architecture for the Internet Protocol”), including either, or both, of IETF RFC 1826 (“IP Authentication Header”), and IETF RFC 1827 (“IP Encapsulating Protocol”).

Where appropriate, the procedures and constructs of H.235 shall be utilized to support application-level security. Specifically, the token formats and authentication exchanges shall be used. Tokens and crypto-tokens received in response messages should be used in a subsequent related request.

1.8.2
Message Definitions

Each message contains a set of common fields in addition to the message-specific information. The common fields are:

Field
Description

sequenceNumber
Each request or update message contains a unique sequence number. The message sent in response to a request message (a confirmation or rejection message) uses the sequence number from the request message. Retransmitted messages shall have the same sequence number.

replyAddress
This is the address to which to send the reply to a request message. All request messages shall include a replyAddress except for cases where the address can be derived from the transport layer. On IP networks, if the sender of the request message is listening on the default port (2099), then the reply address need not be included. In such a case, the receiver obtains the transport address of the sender by appending default port (2099) to the IP address of the sender as received in the IP header of the request packet.

version
Protocol version in use by the sender of this message

hopCount
This defines the number of border elements through which this message may propagate. When a border element receives this message and decides that the message should be forwarded on to another border element, it first decrements hopCount. If hopCount is then greater than 0, the border element inserts the new hop count value into the message to be forwarded. If hopCount has reached 0, the border element shall not forward the message. If the message is a request, the border element should respond with a confirmation message with any applicable information. If no information is available, the border element should respond with a rejection message.

integrityCheckValue
Provides improved message integrity/message authentication. The cryptographically based integrity check value is computed by the sender applying a negotiated integrity algorithm and the secret key upon the entire message. Prior to integrityCheckValue computation each byte of this field shall be set to zero. After computation, the sender puts the computed integrity check value in the integrityCheckValue field and transmits the message.

tokens
This is some data which may be required to allow the operation. The data shall be inserted into the message if available.

cryptoTokens
Encrypted tokens

nonStandard
Non standard information

serviceID
This identifer identifies a particular service relationship session between two border elements. Whenever a border element receives a ServiceRequest message, it allocates a globally unique service ID and returns it to the sender of the ServiceRequest message in the ServiceConfirm message.

Once a service relationship has been established, the service ID is included in all subsequent messages with the border element (e.g. usage indication, descriptorID request, descriptor request, access request). This is used by the recipient border element to check if it has a service relationship with the sender of the message.

1.8.2.1
Descriptor

The Descriptor is not a message, but is rather a message element used to label a set of templates.

The Descriptor contains the following information:

Field
Description

descriptorInfo
This holds a unique identifier for the descriptor and the time it was last changed (see Descriptor Information below).

templates
This is a set of templates which define the addresses this descriptor can resolve.

gatekeeperID
This is a text identifier that indicates the owner of the descriptor (i.e., the gatekeeper that created this message)

1.8.2.2
Descriptor Information

Descriptor information uniquely identifies the descriptor and indicates the last time the descriptor changed.

Field
Description

descriptorID
This is a globally unique identifier used to identify this descriptor from among many possible descriptors.

lastChanged
This is the UTC date and time this descriptor was last changed.

1.8.2.3
Address Template

The Address Template describes a set of one or more alias addresses. The Template is not a message, but is an element used as a building block for other elements. The Template consists of other structures, which are described in subsections.

Field
Description

pattern
This is a list of patterns (see Pattern below)..

routeInfo
This is a list of route information for this template (see Route Information below).

timeToLive
This indicates the time, expressed in seconds, for which this template is valid.

1.8.2.3.1
Route Information

The route information structure found in the template (the routeInfo field) contains the following:

Field
Description

messageType
This indicates the type of message to send when attempting to resolve a specific address within this template. Possibilities are sendAccessRequest, sendSetup, or nonExistent (indicates that the address does not exist).

callSpecific
If set to TRUE, authorization is requested for each call to this route, implying that the AccessRequest message shall include the call information. This boolean field has meaning only when messageType is sendAccessRequest; otherwise, callSpecific shall be set to FALSE.

usageSpec
If present, this specifies the usageIndication messages that shall be sent regarding the calls to this route.

priceInfo
This is a list of pricing information for this particular route (see Pricing Information below). Note that multiple gateways with different pricing structures would be described in multiple RouteInformation structures.

contacts
This is contact information for the element that will accept the message as specified in the messageType field of routeInfo. The contact information may be provided as a list of possible contacts (see Contact Information description below).

type
This indicates the type of endpoint that can serve the call. For gatekeeper routed cases, this indicates the types of endpoints served by the gatekeeper rather than the gatekeeper itself.

1.8.2.3.2
Pricing Information

Pricing information appears as an element in the Route Information structure (the priceInfo field). Pricing information is defined through the PriceInfoSpec and PriceElement structures.

The PriceInfoSpec structure contains the following fields:

Field
Description

currency
This is an ISO-4217 currency designator.

currencyScale
This is the number of places to shift the implied radix point to the left. For example, when currency is specified as USD, a currencyScale of 2 would indicate that the amount in priceElement is expressed in United States cents.

validFrom
This is the UTC date and time from which this information is valid.

validUntil
This is the UTC date and time at which this information expires.

hoursFrom
This is the time of day when this rate starts.

hoursUntil
This is the time of day when this rate ends. It may be less than hoursFrom, indicating a rate which spans 0000.

priceElement
This is an optional list of PriceElements which sum to effect the pricing.

priceFormula
This is an optional string containing a pricing formula used as an alternative to the structured PriceElement.

The PriceElement structure contains the following fields:

Field
Description

amount
This is the meter increment. The meter increments once for each quantum or fraction of quantum.

quantum
This is the number of units for which amount applies. For example, a value of 60, with units in seconds, indicates that the call is priced per minute or fraction of minute. If the units field is set to either of initial, minimum or maximum values, then the quantum field is irrelevant, and its value shall be ignored by the recipient.

units
This is the type of unit in which quantum is expressed:

· Seconds – seconds of call duration

· packets – packets transmitted or received

· bytes – bytes transmitted or received

· initial – an initial connect charge

· minimum – a minimum call charge

· maximum – a maximum call charge

1.8.2.3.3
Contact Information

The Contact Information structure is an element of the Route Information structure (the contacts field).

Field
Description

transportAddress
This is the address (e.g., transport address or URL) to which to send the message specified in the messageType field of the Route Information structure. Whenever possible, a transport address shall be used.

priority
When multiple contacts are listed, the priority field specifies the order in which the multiple contacts should be tried. Contacts in the list can share a priority, for example if there is no preference on the order in which the contacts should be tried. A priority of 0 indicates the highest priority (first choice).

transportQoS
Indicates where the responsibility lies for resource reservation for a call made through this contact.

security
Security mechanism in descending order of preference to be used when communicating with contact.

accessTokens
This is a set of tokens that shall be passed in the message to this contact (Setup or AccessRequest). These tokens shall also be sent in subsequent UsageIndication messages pertaining to the calls using this template.

1.8.2.3.4
Pattern

The Pattern structure appears in the Address Template. The Pattern allows specification of an alias address, a wildcarded alias address, or a range of alias addresses:

Field
Description

specific
This is a specific alias address.

wildcard
This some hierarchical definition that represents possible expansion of the string. For E.164 numbers this expansion is possible at the end of the number; for email addresses the expansion is possible at the beginning. For example, if wildcard is “+1 303”, the pattern could represent any number in the Denver area code.

range
This is a range of addresses, including the indicated start and end of range.

1.8.2.4
Common Structures

The structures defined in this section appear in many of the messages.

1.8.2.4.1
AlternateBE

Field
Description

contactAddress
This is the alternate border element’s transport address (the address to which to send Annex G messages).

priority
When multiple alternates are listed, the priority field specifies the order in which the multiple alternates should be tried. Alternates in the list can share a priority, for example if there is no preference on the order in which the alternates should be tried. A priority of 0 indicates the highest priority (first choice).

elementIdentifier
This alternate border element uses this unicode string as an identifier.

1.8.2.4.2
PartyInformation

This structure contains information about a party of the call (either source or destination).

Field
Description

logicalAddress
E-mail or E.164 formatted addresses that identify the party.

domainIdentifier
An alias address identifying the AD which originated, or terminated the call. In case where multiple domains are involved in placing a call, then the domain that served as the call origination or termination from the sender’s perspective should be stated.

transportAddress
This is the transport address of the endpoint.

endpointType
This indicates details about the endpoint type and capabilities.

userInfo
This is information regarding the user behind the call. This may include identification in e-mail or PIN number format, and possible authentication credentials.

timeZone
This is the Time zone of the party, as relevant for pricing purposes. If the originating party is a gateway, then the time zone of the gateway has to be conveyed. Described in seconds relative to UTC.

1.8.2.4.3
CallInformation

Information for identifying a specific call.

Field
Description

callIdentifier
This provides unique identification of the call. This shall be the callIdentifier associated with the same call as in RAS and call signaling messages.

conferenceID
This provides unique identification of the conference to which the call belongs. This shall be the conferenceID associated with the same call as in RAS and call signaling messages.

1.8.2.4.4
UserInformation

Information for identifying the user on any party of the call.

Field
Description

userIdentifier
Uniquely identifies the user.

userAuthenticator
Encrypted tokens for secure authentication.

1.8.2.4.5
Usage Specification

This element describes the required parameters needed to be reported in the UsageIndication messages. The calls for which this specification applies is determined by the context of the message containing the UsageSpecification element.

Field
Description

sendTo
Border element to send the UsageIndication messages to. If the sender has a service relationship with that border element, this is the element identifier returned in the ServiceConfirmation message.

when
Specifies the stages of the call, and the frequency, at which the indications should be sent:

· never- stop sending messages.

· start- when the call begins.

· end- by the end of the call, or thereafter.

· period- periodically, during the call lifetime. The period is measured in seconds.

· failure- report failed call attempts.

required
A list of identifiers for fields that must be present in the UsageIndication messages. The sender of the usage information shall reject or ignore the message containing this message, if it cannot supply these fields.

preferred
A list of identifiers for fields that should be present in the UsageIndication messages.

1.8.2.4.6
Security Mode

This element describes a specific security profile to be used for Annex G communication.

Field
Description

authentication
This indicates the authentication mechanism to be used. The authentication mechanism must be chosen from the set provided in the ServiceRequest message.

integrity
This indicates the integrity mechanism to be used. If present, all subsequent messages shall populate the integrityCheckValue field, in this case, the AuthenticationMode describes the way the secret keys are generated (DH exchange, or a-priori).

algorithmOIDs
This indicates the encryption algorithms for the security mechanism.

1.8.2.5

Service Request

A border element may send a ServiceRequest message to another border element to establish a service relationship. The relationship defines the security mechanisms to be used between the border elements and allows identification of alternate, or backup, border elements. Note that the relationship is a one-way relationship. The security negotiated between the 2 border elements is used for requests sent by the border element that sent the ServiceRequest and for responses sent by the recipient of the ServiceRequest. Session keys may be generated during the process of service relationship establishment. The keys will be valid through the lifetime of the service relationship. Tokens may be used for that purpose, as defined in H.235.

The recipient of the ServiceRequest may indicate alternate border elements that the sender of ServiceRequest may try for backup service. Establishing a service relationship is an optional procedure, although a border element’s policy may require such a relationship.

A border element may send a ServiceRequest message to a border element with which it has an existing relationship, with the intent that the terms of the original relationship be terminated and replaced with the new terms. Service relationships may have limited time to live. A border element may refresh the relationship by sending a new Service Request.

Field
Description

elementIdentifier
A string that identifies the BE that sends the request.

domainIdentifier
The AD that requests the service relationship.

securityCapability
Set of security mechanisms that this border element can support.

timeToLive
The suggested lifetime in seconds for the service relationship. If not present, infinite lifetime is assumed.

1.8.2.6

Service Confirmation

A border element in receipt of a ServiceRequest message responds with a ServiceConfirmation message to indicate that it agrees to establish a service relationship. Every new service relationship is identified by a service identifier. Whenever a border element receives a new ServiceRequest message, it allocates a unique service ID and returns it to the sender of the service request message in the "service confirm" message. If the border element already has a service relationship with the border element that sent the ServiceRequest message, sending ServiceConfirmation indicates that the terms of the original relationship are terminated and replaced with the new terms.

Field
Description

elementIdentifier
This is a string that identifies the border element.

domainIdentifier
The AD that responds to the request.

alternates
This is a list of alternate border elements that may be contacted in the event that this border element fails to respond.

securityMode
This indicates the security mechanism to be used for this service relationship. The security mechanism must be chosen from the set provided in the ServiceRequest message.

timeToLive
The lifetime in seconds of the service relationship as determined by the serving border element.

1.8.2.7

Service Rejection

A border element in receipt of a ServiceRequest message responds with a ServiceRejection message to indicate that it declines to establish a service relationship. If the border element already has a service relationship with the border element that sent the ServiceRequest message, sending ServiceRejection indicates that the proposed new terms have been rejected, but the terms of the original relationship remain.

Field
Description

reason
This is the reason the border element rejected the ServiceRequest. Choices are:

· serviceUnavailable – This border element is not currently available for service.

· serviceRedirected – The list of alternate border elements should be attempted.

· security – This border element cannot support any of the security mechanisms proposed in the ServiceRequest message.

· continue – indicates the subsequent ServiceRequest message be sent, in order to continue multiple stage key exchange process

· undefined – The reason for rejecting the ServiceRequest does not match any of the other choices.

alternates
This is a list of alternate border elements that might be able to honor the ServiceRequest. If the reason is serviceRedirected, at least one alternate should be provided.

1.8.2.8

Service Release

Either border element in a service relationship may terminate the relationship by sending the ServiceRelease message.

Field
Description

reason
This is the reason this border element terminated the service relationship. Choices are:

· outOfService – The border element is going out of service.

· maintenance – The border element is being taken out of service for maintenance.

· terminated – The border element has decided to terminate the relationship.

· expired – the time-to-live for the service relationship has elapsed.

alternates
This is a list of alternate border elements that might be able to establish a service relationship.

1.8.2.9

Descriptor Request

The DescriptorRequest message allows an entity to query a border element for specific descriptors.

Field
Description

descriptorID
This identifies one or more particular descriptors requested by the sender of this message.

1.8.2.10
Descriptor Confirmation

The DescriptorConfirmation message is a border element’s positive response to a DescriptorRequest, when the border element can interpret the request and implementation rules allow information exchange.

Field
Description

descriptor
This is the descriptors described above.

1.8.2.11
Descriptor Rejection

A border element can reject a descriptor request for a variety of reasons.

Field
Description

reason
This is the reason the DescriptorRequest was rejected. Choices are:

· packetSizeExceeded – The reply would exceed the maximum packet size, so the requester should send the request using a different transport mechanism (e.g., use TCP instead of UDP).

· illegalID – The recipient of the DescriptorRequest has no record of the requested descriptor.

· security – The DescriptorRequest did not meet the recipient’s security requirements.

· hopCountExceeded – The hop count reached zero and no information is available.

· unavailable - The recipient cannot provide descriptors. Static or out-of-band provisioning method should be used.

· noServiceRelationship – The recipient will exchange this information only after establishment of a service relationship.

· undefined – The reason for rejecting the DescriptorRequest does not match the other choices.

descriptorID
This identifies the specific descriptor for this response.

1.8.2.12
Descriptor ID Request

The DescriptorIDRequest allows an entity to query a border element for the list of descriptor identifiers within the border element’s administrative domain.

1.8.2.13
Descriptor ID Confirmation

A DescriptorIDConfirmation message is a border element’s positive response to the DescriptorIDRequest message. A border element in receipt of a DescriptorIDConfirmation message may send the DescriptorRequest message to request transmission of the descriptors.

Field
Description

descriptorInfo
This is a list of descriptor information, where each entry in the list uniquely identifies the descriptor and the time it last changed.

1.8.2.14
Descriptor ID Rejection

A border element can reject a DescriptorIDRequest for a variety of reasons.

Field
Description

reason
This indicates the reason for rejecting the request. Choices are:

· noDescriptors – This indicates that the border element has no descriptors to report.

· security – The DescriptorIDRequest did not meet the recipient’s security requirements.

· hopCountExceeded – The hop count reached zero and no information is available.

· unavailable - The recipient cannot provide descriptors. Static or out-of-band provisioning method should be used.

· noServiceRelationship – The recipient will exchange this information only after establishment of a service relationship.

· undefined – The reason for rejecting the DescriptorIDRequest does not match the other choices.

1.8.2.15
Descriptor Update

The DescriptorUpdate message is a border element’s notification that address information has changed. A border element may also send the DescriptorUpdate message during initialization. A border element in receipt of the DescriptorUpdate may request information from the element identified in the DescriptorUpdate.

Field
Description

sender
An element in receipt of the DescriptorUpdate may send a request to this address (e.g., transport address or URL).

updateInfo
This is a list of updates. Each entry in the list provides either the descriptor or the descriptor identifier that was updated. Each entry in the list also indicates whether the descriptor was changed, added, or deleted.

1.8.2.16
Descriptor Update Acknowledgement

A border element should acknowledge receipt of a DescriptorUpdate message by sending the DescriptorUpdateAck message. The sqeuence number used in the acknowledgement should be the same as the sequence number received in the DescriptorUpdate message. A border element should not acknowledge a DescriptorUpdate message that arrives over multicast.

1.8.2.17
Access Request

A border element can send an AccessRequest message to another border element to ask for resolution of a specific alias address.

Field
Description

destinationInfo
This is the address to be resolved.

sourceInfo
This is information about the originating party of the call to which access is requested.

callInfo
This provides identification of the particular call for which access authorization is requested. If not present, then the request is for indefinite calls to the specified destinations.

usageSpec
This indicates the usage messages that the originating party requests the answering party to send regarding the call requested in this message. Applies only if CallInfo is present.

1.8.2.18
Access Confirmation

A border element returns in the AccessConfirmation message the information requested in the AccessRequest message.

Field
Description

templates
This is a list of tempates which match the attributes of the AccessRequest.

partialResponse
If TRUE, this message contains some fraction of the available information. The entire information was not sent because it would exceed the packet size. The entire information should be retrieved using another transport type (e.g., TCP)

1.8.2.19
Access Rejection

A border element can reject an AccessRequest for a variety of reasons.

Field
Description

reason
This is the reasons for rejecting the request. Choices are:

· noMatch – The destination specified in the AccessRequest cannot be resolved.

· packetSizeExceeded - The reply would exceed the maximum packet size, so the requester should send the request using a different transport mechanism (e.g., use TCP instead of UDP).

· security – The AccessRequest did not meet the recipient’s security requirements.

· hopCountExceeded – The hop count reached zero and no information is available.

· noServiceRelationship – The recipient will exchange this information only after establishment of a service relationship.

· needCallInformation – Specific call information was not present in the request.
· undefined – The reason for rejecting the AccessRequest does not match the other choices.

1.8.2.20
Request in Process

A border element may return the RequestInProgress message to indicate that the time required by the border element to respond to a request may exceed normal expected response intervals. The sequence number shall be the same sequence number found in the request for which this message will be sent.

Field
Description

delay
The expected length of time, expressed in milliseconds, for the border element to respond to the original request

1.8.2.21
Non-Standard Request

The NonStandardRequest may be sent from a border element to represent a request message not defined in Annex G. The non-standard information is carried in the nonStandard element of AnnexGCommonInfo.

1.8.2.22
Non-Standard Confirmation

The NonStandardConfirmation may be sent from a border element in response to a NonStandardRequest message. The non-standard information is carried in the nonStandard element of AnnexGCommonInfo.

1.8.2.23
Non-Standard Rejection

The NonStandardRejection may be sent from a border element in response to a NonStandardRequest message. The non-standard information is carried in the nonStandard element of AnnexGCommonInfo.

Field
Description

reason
This is the reasons for rejecting the request. Choices are:

· notSupported – The recipient understands that this is a NonStandardRequest, but does not understand or support the non-standard data.

· noServiceRelationship – The recipient will exchange this information only after establishment of a service relationship.

· undefined – The reason for rejecting the NonStandardRequest does not match the other choices.

1.8.2.24
Unknown Message Response

A border element in receipt of a message it does not understand should respond to the transmitter withthe UnknownMessageResponse message. The border element should not use this message if some other Annex G message provides an appropriate response (for example, a DescriptorRejection would be the appropriate response to a DescriptorRequest with an illegal descriptor identifier).

Field
Description

unknownMessage
This is the contents of the unknown message.

reason
This is the reason the the UnknownMessageResponse was used. Choices are:

· notUnderstood – The message was not understood.

· undefined – The reason for sending UnknownMessageResponse does not match any of the other choices.

1.8.2.25
Usage Request

Request the recipient to send UsageIndication messages concerning a specific call.

Field
Description

callInfo
The call for which to send the Indication.

usageSpec
Specifies when the indications should arrive, and what they should contain.

1.8.2.26
Usage Confirmation

The UsageConfirmation message is sent in response to a Usage Request message to indicate that the recipient accepted the request and will send usage indications.

1.8.2.27
Usage Rejection

The UsageRejection message is sent in response to a Usage Request message to indicate that the recipient rejected the request and will not send the usage indications subsequently.

Field
Description

reason
This is the reason the border element rejected the UsageRequest. Choices are:

· invalidCall - The call specified in the UsageRequest is not a recognized call.
· security - The UsageRequest did not meet the recipient’s security requirements.
· unavailable – The recipient does not have usage information for the requested call.
· noServiceRelationship - The recipient will exchange this information only after establishment of a service relationship.
· undefined - The reason for rejecting the UsageRequest does not match any of the other choices.

1.8.2.28
Usage Indication

Report call details and usage information. This message is sent with respect to the last UsageSpecification element received by the BE concerning the call.

Field
Description

callInfo
The call for which the indication applies.

accessTokens
The access tokens for the call. These are the tokens that were received in the address template used for the call, and propagated in the AccessRequest / Setup message for the same call.

senderRole
The role of the sender of the indication:

· originator – originating party.

· destination – terminating party.

· nonStandard – other.

usageCallStatus
The current status of the call:

· preConnect

· callInProgress

· callEnded

· RegistrationLost

srcInfo
E.164 or e-mail address of the caller party. In case of E.164 this designates the ANI/CLI.

destAddress
E.164 or e-mail address for the called party,

startTime
The time the call started in UTC format. Relevant only for calls that passed the setup stage. For multiple media types used in the call, each media type should report a different StartTime, corresponding to the time at which that media stream started. For periodic messages StartTime should correspond with the EndTime of the previous message.

endTime
The time the call ended in UTC format. Relevant only for ended calls. For multiple media types used in the call, each media type shall report a different EndTime corresponding to the time at which that media stream ended. For periodic messages, EndTime is the time which ends a reporting period.

terminationCause
The reason for the end of the call. Relevant only for ended calls.

usageFields
Set of fields of information. Each field is represented by a UsageField which can be a standard or non-standard. Standard UsageFields are for future study.

1.8.2.29
Usage Indication Confirmation

The UsageIndicationConfirmation message is sent in response to a UsageIndication message, indicating the recipient accepted the indication as reported.

1.8.2.30
Usage Indication Rejection

The UsageIndicationRejection message is sent in response to a UsageIndication message, indicating the recipient rejected the indication and will ignore it.

Field
Description

reason
This is the reason the border element rejected the UsageIndication message. Choices are:

· unknownCall - The call specified in the UsageIndication is not a recognized call.
· incomplete - The UsageIndication did not contain all the information required by the UsageSpecification that applies to this UsageIndication.
· security - The UsageIndication did not meet the recipient’s security requirements.
· noServiceRelationship - The recipient will exchange this information only after establishment of a service relationship.
· undefined - The reason for rejecting the UsageIndication does not match any of the other choices.

1.8.2.31
Validation Request

A border element that terminates a call can send a ValidationRequest message to another border element to verify the validity of the origination of the call.

Field
Description

accessToken
Tokens received from the originator to prove access authorization for the call.

destinationInfo
Details about the destination of the call.

sourceInfo
This is information about the type of endpoint that originated the call.

callInfo
This provides identification of the particular call for which access authorization is requested.

usageSpec
If present, indicates the border element sending the message requests that it be sent usage indication regarding the validated call.

1.8.2.32
Validation Confirmation

Indicates that the call is validated. The requesting border element may terminate the call. The validating border element may indicate aliases to terminate the call.

Field
Description

destinationInfo
Alternative parameters for the destination to be used by the recipient border element.

usageSpec
If present, indicates the border element sending the confirmation requests that it be sent usage indication regarding the validated call.

1.8.2.33
Validation Rejection

Indicates the call is not valid. The requesting border element may not complete the call.

Field
Description

reason
This is the reasons for rejecting the request. Choices are:

· tokenNotValid – the access token supplied are not valid for the call.

· security – The ValidationRequest did not meet the recipient’s security requirements.

· hopCountExceeded – The hop count reached zero and no information is available.

· missingSourceInfo – the source information supplied was not sufficient to validate the call.

· missingDestInfo – the source inforation supplied was not sufficient to validate the call.

· noServiceRelationship – The recipient will exchange this information only after establishment of a service relationship.
· undefined – The reason for rejecting the ValidationRequest does not match the other choices.

1.9
Signaling Examples

These signaling examples are provided to illustrate basic operation. In these examples, assume that the administrative domains have agreements with each other, so the border elements have been provisioned with information (e.g., TCP ports) about each other. In many of the examples below, RAS LRQ/LCF messages are shown to be exchanged between a gatekeeper and a border element within the same administrative domain. This is for pure illustrative purpose, since the protocol for reference point B has not been determined (see 1.1)

1.9.1
Distributed or Full Mesh

An example of a distributed network is shown in Figure 7.

[image: image7.wmf]Administrative

domain A

1732*

Administrative

domain B

1908*

1908953*

Administrative

domain C

1303538*

1303*

Figure 7 - Distributed Network for Signaling Examples

For this example, assume the administrative domains each have one border element, and that the border elements are configured to resolve addresses as follows:

Administrative Domain
Template definition
Comment

A
Descriptor “d1”:

Pattern = 1732*

Transport address = BEA call signal address

Message type = sendSetup

Signaling for any call into AD A will be through AD A’s border element.

B
Descriptor “d2”:

Pattern = 1908*

Transport address = BEB annex g address

Message type = sendAccessRequest

Descriptor “d3”:

Pattern = 1908953*

Transport address = GWB1 CALL SIGNALLING address

Message type = sendSetup
For calls to 1908*, an AccessRequest message is needed to get the destination’s (i.e., a gateway) call signaling address.

For calls to 1908953*, the Setup can be sent directly to this particular gateway.

C
Descriptor “d4”:

Pattern = 1303538*

Transport address = GKC1 call signal address

Message type = sendSetup

Descriptor “d5”:

Pattern = 1303*

Transport address = BEC annex g address

Message type = sendAccessRequest
Calls to 1303538* will be routed through this particular gatekeeper.

Calls to 1303* can be signalled directly to the destination gateway, but an AccessRequest must be sent to obtain the gateway’s call signaling address.

1.9.1.1
Exchange of Zone Information

In the distributed, or full mesh, organization each administrative domain is aware of each other administrative domain, presumably through a number of bilateral contractual agreements. At any time, a border element in an administrative domain can query another administrative domain to obtain addressing information. An example of this signaling appears in Figure 8.

[image: image8.wmf]DescriptorIDRequest

DescriptorIDConfirmation

(IDs=d2, d3)

DescriptorRequest (d2)

DescriptorConfirmation

DescriptorRequest (d3)

DescriptorConfirmation

DescriptorIDRequest

DescriptorIDConfirmation (IDs=d4, d5)

DescriptorRequest (d4)

DescriptorConfirmation

DescriptorRequest (d5)

DescriptorConfirmation

BE

A

BE

B

BE

C

Figure 8 - Example of Descriptor Exchange

Similarly, BEB queries BEA and BEC, and BEC queries BEA and BEB.

1.9.1.2
Placing a Call

Suppose that T1 in administrative domain A initiates a call to 19085551515 (T2). On receipt of T1’s ARQ, T1’s gatekeeper sends an LRQ. A border element in administrative domain A, BEA, has previously received zone descriptors and knows how to process the request. As shown in Figure 9, BEA sends an AccessRequest message to BEB, as specified in the descriptor BEA received from BEB. BEB replies back with T2’s call signaling address (in this example, T2 could be any type of endpoint). T1 then sends the H.225.0 Setup message to T2’s call signaling address following the normal procedures defined in H.323 ot its annexes.

[image: image9.wmf]ARQ

LRQ

AccessRequest

AccessConfirmation

LCF

ACF

Setup

T2

T1

GK

A1

BE

A

BE

B

Figure 9
Now, suppose that T1 initiates a call to 19089532000. In this example, BEA has previously obtained the call signaling address of a gateway in administrative domain which will accept the call. As shown in Figure 10, BEA can respond to the LRQ without any message exchange into administrative domain B, allowing T1 to send the Setup message directly to the gateway.

[image: image10.wmf]ARQ

LRQ

LCF

ACF

Setup

T1

GK

A1

BE

A

GW

B1

Figure 10
In another example, suppose that T1 initiates a call to 13035382899. Administrative domain C has advertised its ability to accept a call to this number, and will accept call signaling through its gatekeeper in implementing the gatekeeper routed model. As shown in Figure 11, BEA can respond to the LRQ with an LCF that contains the call signaling address of a gatekeeper in administrative domain C without any message exchange into administrative domain C.

[image: image11.wmf]ARQ

LRQ

LCF

ACF

Setup

Setup

GK

C1

T3

T1

GK

A1

BE

A

BE

C

Figure 11
Alternatively, T1’s gatekeeper can implement the gatekeeper routed model, as shown in Figure 12.

[image: image12.wmf]ARQ

LRQ

LCF

ACF

Setup

Setup

Setup

GK

C1

T3

T1

GK

A1

BE

A

BE

C

Figure 12
1.9.2
Clearing House

An example of a configuration using a clearing house is shown in Figure 13. Refer to this figure for the following examples. In this example, the clearing house holds addressing information for all administrative domains for which the clearing house provides service.

[image: image13.wmf]Clearing house

1908*

1908953*

1303538*

1303*

Administrative

domain D

1908*

1908953*

Administrative

domain E

1303538*

1303*

Figure 13 - Sample Clearing House Configuration

For this example, the border elements in administrative domains D and E, and the clearing house, contain the following information:

Administrative Domain
Template definition
Comment

D
Descriptor “d1”:

Pattern = 1908*

Transport address = BED annex g address

Message type = sendAccess Request

Descriptor “d2”:

Pattern = 1908953*

Transport address = GWD1 Call Signalling address

Message type = sendSetup
For calls to 1908*, an Access Request message is needed to get the destination’s (i.e., a gateway) call signaling address.

For calls to 1908953*, the Setup can be sent directly to this particular gateway.

E
Descriptor “d3”:

Pattern = 1303538*

Transport address = GKE1 call signal address

Message type = sendSetup

Descriptor “d4”:

Pattern = 1303*

Transport address = BEE annex g address

Message type = sendAccess Request
Calls to 1303538* will be routed through this particular gatekeeper.

Calls to 1303* can be signalled directly to the destination gateway, but an AccessRequest must be sent to obtain the gateway’s call signaling address.

CH
Descriptor “d1”:

Pattern = 1908*

Transport address = BED annex g address

Message type = sendAccess Request

Descriptor “d2”:

Pattern = 1908953*

Transport address = GWD1 call signalling address

Message type = sendSetup

Descriptor “d3”:

Pattern = 1303538*

Transport address = GKE1 call signal address

Message type = sendSetup

Descriptor “d4”:

Pattern = 1303*

Transport address = BEE annex g address

Message type = sendAccess Request
The clearing house obtains descriptors from other ADs and holds this information for distribution during descriptor exchange.

1.9.2.1
Exchange of Zone Information

In this example, a clearing house exchanges information with administrative domains which subscribe to the clearing house’s service. The clearing house holds the information it receives from each administrative domain and passes this information along to other administrative domains. In this example, the clearing house appears as administrative domain E to administrative domain D, while administrative domains D and E are not necessarily aware of each other.

[image: image14.wmf]DescriptorIDRequest

DescriptorIDConfirmation

(IDs=d1, d2, d3, d4)

DescriptorRequest (d3)

DescriptorConfirmation

DescriptorRequest (d4)

DescriptorConfirmation

DescriptorIDRequest

DescriptorIDConfirmation (IDs=d1, d2, d3, d4)

DescriptorRequest (d1)

DescriptorConfirmation

DescriptorRequest (d2)

DescriptorConfirmation

BE

D

BE

CH

BE

E

Figure 14 - Example Descriptor Exchange with Clearing House

1.9.2.2
Placing a Call

Suppose that T1 in administrative domain E initiates a call to 19085551515. The border element in administrative domain E has received descriptors from the clearing house that indicate the clearing house should be consulted for such a call. The border element sends an AccessRequest to the clearing house border element. Based on the descriptors the clearing house border element received from the border element in administrative domain D, the clearing house border element sends an AccessRequest to the border element in administrative domain D. When the clearing house border element returns the confirmation to the border element in administrative domain E, the confirmation contains the information sent from the border element in administrative domain D. T1’s gatekeeper returns an ACF with T2’s destCallSignalAddress, allowing T1 to send the Setup message to T2.

[image: image15.wmf]ARQ

LRQ

AccessRequest

AccessRequest

AccessConfirmation

AccessConfirmation

LCF

ACF

Setup

BE

D

T2

T1

GK

E1

BE

E

BE

CH

Figure 15
Alternatively, T1’s gatekeeper could route the call signaling, as shown in Figure 16.

[image: image16.wmf]ARQ

LRQ

AccessRequest

AccessRequest

AccessConfirmation

AccessConfirmation

LCF

ACF

Setup

Setup

BE

D

T2

T1

GK

E1

BE

E

BE

CH

Figure 16
Another possibility is for the clearing house to respond to the border element in administrative domain E with the contact information for the border element in administrative domain D, as shown in Figure 17.

[image: image17.wmf]ARQ

LRQ

AccessRequest

AccessConfirmation

AccessRequest

AccessConfirmation

LCF

ACF

Setup

BE

D

T2

T1

GK

E1

BE

E

BE

CH

Figure 17
Now suppose that T1 initiates a call to 19089532000. The descriptors previously exchanged allow the border element to return the call signaling address to T1 without consulting the clearing house, as shown in Figure 18.

[image: image18.wmf]ARQ

LRQ

LCF

ACF

Setup

T1

GK

E1

BE

E

GW

D1

Figure 18
Next, consider a scenario where T1 initiates a call to 13035382899. The border element in administrative domain E had previously advertised that calls to 1303538* could be routed directly to a gatekeeper in administrative domain E without need for an Access Request message, as shown in Figure 19. (This advertisement does not indicate that the entity is a gatekeeper, only that a Setup message could be sent to a specified address.) The border element in administrative domain D received this information from the clearing house, assuming the clearing house in this example does not have a requirement to provide address resolution for these calls.

[image: image19.wmf]ARQ

LRQ

LCF

ACF

Setup

Setup

GK

E1

T3

T1

GK

D1

BE

D

BE

E

Figure 19
Recall that a border element may be combined with a gatekeeper, and may also route calls in the gatekeeper routed model. An alternative signaling example is shown in Figure 20. It is also possible to use the border element as a routing gatekeeper into an administrative domain if the descriptors are so configured.

[image: image20.wmf]ARQ

LRQ

LCF

ACF

Setup

Setup

Setup

T1

GK

D1

BE

D

BE

E

GK

E1

T3

Figure 20
In the example of figure 21, the clearing house validates the call for the terminating administrative domain. The clearing house also requires both originating and terminating border elements to send usage indications for the call.

[image: image21.wmf]ARQ

AccessRequest

AccessConfirmation

ACF

Setup

ARQ

ValidationRequest

ValidationConfirmation

ACF

Connect

UsageIndication

UsageIndication

UsageIndicationConfirm

UsageIndicationConfirm

Release Complete

DRQ

DCF

DRQ

DCF

UsageIndication

UsageIndicationConfirm

UsageIndication

UsageIndicationConfirm

BE

D

/GK

D

T2

T1

GK

D

/

BE

E

BE

CH

Figure 21
2 Message Syntax

< do not translate or modify this section >

ANNEXG-MESSAGES DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

IMPORTS

AuthenticationMechanism,

TimeStamp,

ClearToken

FROM H235-SECURITY-MESSAGES

AliasAddress,

TransportAddress,

ReleaseCompleteReason,

ConferenceIdentifier,

CallIdentifier,

CryptoH323Token,

CryptoToken,

EndpointType,

GatekeeperIdentifier,

GloballyUniqueID,

NonStandardParameter,

NumberDigits,

PartyNumber,

TransportQOS,

VendorIdentifier,

IntegrityMechanism,

ICV

FROM H323-MESSAGES;

Message ::= SEQUENCE

{

body
AnnexGMessageBody,

common
AnnexGCommonInfo,

...

}

AnnexGMessageBody ::= CHOICE

{

serviceRequest

ServiceRequest,

serviceConfirmation

ServiceConfirmation,

serviceRejection

ServiceRejection,

serviceRelease

ServiceRelease,

descriptorRequest

DescriptorRequest,

descriptorConfirmation

DescriptorConfirmation,

descriptorRejection

DescriptorRejection,

descriptorIDRequest

DescriptorIDRequest,

descriptorIDConfirmation
DescriptorIDConfirmation,

descriptorIDRejection

DescriptorIDRejection,

descriptorUpdate

DescriptorUpdate,

descriptorUpdateAck

DescriptorUpdateAck,

accessRequest

AccessRequest,

accessConfirmation

AccessConfirmation,

accessRejection

AccessRejection,

requestInProgress

RequestInProgress,

nonStandardRequest

NonStandardRequest,

nonStandardConfirmation

NonStandardConfirmation,

nonStandardRejection

NonStandardRejection,

unknownMessageResponse

UnknownMessageResponse,

usageRequest

UsageRequest,

usageConfirmation

UsageConfirmation,

usageIndication

UsageIndication,

usageIndicationConfirmation
UsageIndicationConfirmation,

usageIndicationRejection
UsageIndicationRejection,

usageRejection

UsageRejection,

validationRequest

ValidationRequest,

validationConfirmation

ValidationConfirmation,

validationRejection

ValidationRejection,

...

}

AnnexGCommonInfo ::= SEQUENCE

{

sequenceNumber

INTEGER (0..65535),

version

AnnexGVersion,

hopCount

INTEGER (1..255),

replyAddress

SEQUENCE OF TransportAddress OPTIONAL, -- Must be present in request

integrityCheckValue
ICV OPTIONAL,

tokens

SEQUENCE OF ClearToken OPTIONAL,

cryptoTokens

SEQUENCE OF CryptoH323Token OPTIONAL,

nonStandard

SEQUENCE OF NonStandardParameter OPTIONAL,

...,

serviceID

ServiceID OPTIONAL
}

ServiceID

::= GloballyUniqueID

--

-- Annex G messages

--

ServiceRequest ::= SEQUENCE

{

elementIdentifier
ElementIdentifier OPTIONAL,

domainIdentifier
AliasAddress OPTIONAL,

securityMode
SEQUENCE OF SecurityMode OPTIONAL,

timeToLive

INTEGER (1..4294967295) OPTIONAL,

...
}

SecurityMode ::= SEQUENCE

{

authentication
AuthenticationMechanism OPTIONAL,

integrity

IntegrityMechanism OPTIONAL,

algorithmOIDs
SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,

...

}

ServiceConfirmation ::= SEQUENCE

{

elementIdentifier
ElementIdentifier,

domainIdentifier
AliasAddress,

alternates

AlternateBEInfo OPTIONAL,

securityMode
SecurityMode OPTIONAL,

timeToLive

INTEGER (1..4294967295) OPTIONAL,

...

}

ServiceRejection ::= SEQUENCE

{

reason

ServiceRejectionReason,

alternates

AlternateBEInfo OPTIONAL,

...

}

ServiceRejectionReason ::= CHOICE

{

serviceUnavailable
NULL,

serviceRedirected

NULL,

security

NULL,

continue

NULL,

undefined

NULL,

...
}

ServiceRelease ::= SEQUENCE

{

reason

ServiceReleaseReason,

alternates

AlternateBEInfo OPTIONAL,

...

}

ServiceReleaseReason ::= CHOICE

{

outOfService
NULL,

maintenance

NULL,

terminated

NULL,

expired

NULL,

...

}

DescriptorRequest ::= SEQUENCE

{

descriptorID
SEQUENCE OF DescriptorID,

...

}

DescriptorConfirmation ::= SEQUENCE

{

descriptor

SEQUENCE OF Descriptor,

...

}

DescriptorRejection ::= SEQUENCE

{

reason

DescriptorRejectionReason,

descriptorID

DescriptorID OPTIONAL,

...

}

DescriptorRejectionReason ::= CHOICE

{

packetSizeExceeded
NULL,
-- use other transport type

illegalID

NULL,
-- no descriptor for provided descriptorID

security

NULL,
-- request did not meet security requirements

hopCountExceeded
NULL,

noServiceRelationship NULL,

undefined

NULL,

...

}

DescriptorIDRequest ::= SEQUENCE

{

...

}

DescriptorIDConfirmation ::= SEQUENCE

{

descriptorInfo

SEQUENCE OF DescriptorInfo,

...

}

DescriptorIDRejection ::= SEQUENCE

{

reason

DescriptorIDRejectionReason,

...

}

DescriptorIDRejectionReason ::= CHOICE

{

noDescriptors
NULL,
-- no descriptors to report

security

NULL,
-- request did not meet security requirements

hopCountExceeded
NULL,

noServiceRelationship
NULL,

undefined

NULL,

...

}

DescriptorUpdate ::= SEQUENCE

{

sender

AliasAddress,

updateInfo

SEQUENCE OF UpdateInformation,

...

}

UpdateInformation ::=
SEQUENCE

{

descriptorInfo
CHOICE
{

descriptorID
DescriptorID,

descriptor

Descriptor,

...

},

updateType
CHOICE

{

added

NULL,

deleted

NULL,

changed

NULL,

...

},

 ...

}

DescriptorUpdateAck ::= SEQUENCE

{

...

}

AccessRequest ::= SEQUENCE

{

destinationInfo
PartyInformation,

sourceInfo

PartyInformation OPTIONAL,

callInfo

CallInformation OPTIONAL,

usageSpec

UsageSpecification OPTIONAL,

...
}

AccessConfirmation ::= SEQUENCE

{

templates

SEQUENCE OF AddressTemplate,

partialResponse
BOOLEAN,

...

}

AccessRejection ::= SEQUENCE

{

reason

AccessRejectionReason,

...

}

AccessRejectionReason ::= CHOICE

{

noMatch

NULL,
-- no template matched the destinationInfo

packetSizeExceeded
NULL,
-- use other transport type

security

NULL,
-- request did not meet security requirements

hopCountExceeded
NULL,

needCallInformation
NULL,
-- Call Information must be specified

noServiceRelationship
NULL,

undefined

NULL,

...

}

UsageRequest ::= SEQUENCE

{

callInfo
CallInformation,

usageSpec
UsageSpecification,

...

}

UsageConfirmation ::= SEQUENCE

{

...

}

UsageRejection ::= SEQUENCE

{

reason

UsageRejectReason,

...

}

UsageIndication ::= SEQUENCE

{

callInfo

CallInformation,

accessTokens

SEQUENCE OF AccessToken OPTIONAL,

senderRole

Role,

usageCallStatus

UsageCallStatus,

srcInfo

PartyInformation OPTIONAL,

destAddress

PartyInformation,

startTime

TimeStamp OPTIONAL,

endTime

TimeStamp OPTIONAL,

terminationCause

TerminationCause OPTIONAL,

usageFields

SEQUENCE OF UsageField,

...

}

UsageField ::= SEQUENCE

{

id

OBJECT IDENTIFIER,

value

OCTET STRING,

...

}

UsageRejectReason ::= CHOICE

{

invalidCall

NULL,

unavailable

NULL,

security

NULL,

noServiceRelationship
NULL,

undefined

NULL,

...

}

UsageIndicationConfirmation ::= SEQUENCE

{

...

}

UsageIndicationRejection ::= SEQUENCE

{

reason

UsageIndicationRejectionReason,

...

}

UsageIndicationRejectionReason ::= CHOICE

{

unknownCall

NULL,

incomplete

NULL,

security

NULL,

noServiceRelationship
NULL,

undefined

NULL,

...

}

ValidationRequest ::= SEQUENCE

{

accessToken

SEQUENCE OF AccessToken OPTIONAL,

destinationInfo
PartyInformation OPTIONAL,

sourceInfo

PartyInformation OPTIONAL,

callInfo

CallInformation,

usageSpec

UsageSpecification OPTIONAL,

...

}

ValidationConfirmation ::= SEQUENCE

{

destinationInfo
PartyInformation OPTIONAL,

usageSpec

UsageSpecification OPTIONAL,

...

}

ValidationRejection ::= SEQUENCE

{

reason

ValidationRejectionReason,

...

}

ValidationRejectionReason ::= CHOICE

{

tokenNotValid
NULL,

security

NULL,
-- request did not meet security requirements

hopCountExceeded
NULL,

missingSorceInfo
NULL,

missingDestInfo
NULL,

noServiceRelationship
NULL,

undefined

NULL,

...

}

RequestInProgress ::= SEQUENCE

{

delay

INTEGER (1..65535),

...

}

NonStandardRequest ::= SEQUENCE

{

...

}

NonStandardConfirmation ::= SEQUENCE

{

...

}

NonStandardRejection ::= SEQUENCE

{

reason

NonStandardRejectionReason,

...

}

NonStandardRejectionReason ::= CHOICE

{

notSupported

NULL,

noServiceRelationship
NULL,

undefined

NULL,

...

}

UnknownMessageResponse ::= SEQUENCE

{

unknownMessage

OCTET STRING,

reason

UnknownMessageReason,

...

}

UnknownMessageReason ::= CHOICE

{

notUnderstood
NULL,

undefined

NULL,

...

}

--

-- structures common to multiple messages

--

AddressTemplate ::= SEQUENCE

{

pattern

SEQUENCE OF Pattern,

routeInfo

SEQUENCE OF RouteInformation,

timeToLive

INTEGER (1..4294967295),

...

}

Pattern ::= CHOICE

{

specific

AliasAddress,

wildcard

AliasAddress,

range
SEQUENCE

{

startOfRange
PartyNumber,

endOfRange

PartyNumber

},

...

}

RouteInformation ::= SEQUENCE

{

messageType CHOICE

{

sendAccessRequest
NULL,

sendSetup

NULL,

nonExistent

NULL,

...

},

callSpecific
BOOLEAN,

usageSpec
UsageSpecification OPTIONAL,

priceInfo
SEQUENCE OF PriceInfoSpec OPTIONAL,

contacts
SEQUENCE OF ContactInformation,

type

EndpointType OPTIONAL,

-- must be present if messageType = sendSetup

...

}

ContactInformation ::= SEQUENCE

{

transportAddress
AliasAddress,

priority

INTEGER (0..127),

transportQoS
TransportQOS OPTIONAL,

security

SEQUENCE OF SecurityMode OPTIONAL,

accessTokens
SEQUENCE OF AccessToken OPTIONAL,

...

}

PriceInfoSpec ::= SEQUENCE

{

currency

IA5String (SIZE(3)),

-- e.g., "USD"

currencyScale

INTEGER(-127..127),

validFrom

GlobalTimeStamp OPTIONAL,

validUntil

GlobalTimeStamp OPTIONAL,

hoursFrom

IA5String (SIZE(6)) OPTIONAL,
-- "HHMMSS" UTC

hoursUntil

IA5String (SIZE(6)) OPTIONAL,
-- "HHMMSS" UTC

priceElement

SEQUENCE OF PriceElement OPTIONAL,

priceFormula

IA5String (SIZE(1..2048)) OPTIONAL,

...

}

PriceElement ::= SEQUENCE

{

amount

INTEGER(0..4294967295), -- meter increment

quantum

INTEGER(0..4294967295), -- each or part thereof

units CHOICE

{

seconds

NULL,

packets

NULL,

bytes

NULL,

initial

NULL,

minimum

NULL,

maximum

NULL,

...

},

...

}

Descriptor ::= SEQUENCE

{

descriptorInfo
DescriptorInfo,

templates

SEQUENCE OF AddressTemplate,

gatekeeperID
GatekeeperIdentifier OPTIONAL,

...

}

DescriptorInfo ::= SEQUENCE

{

descriptorID
DescriptorID,

lastChanged

GlobalTimeStamp,

...

}

AlternateBEInfo ::= SEQUENCE

{

alternateBE

SEQUENCE OF AlternateBE,

alternateIsPermanent
BOOLEAN,

...

}

AlternateBE ::= SEQUENCE

{

contactAddress
AliasAddress,

priority

INTEGER (1..127),

elementIdentifier
ElementIdentifier OPTIONAL,

...

}

AccessToken ::= CHOICE

{

token

ClearToken,

cryptoToken
CryptoH323Token,

...

}

CallInformation ::= SEQUENCE

{

callIdentifier

CallIdentifier,

conferenceID

ConferenceIdentifier,

...

}

UsageCallStatus ::= CHOICE

{

preConnect

NULL,
-- Call has not started

callInProgress

NULL,
-- Call is in progress

callEnded

NULL,
-- Call ended

...,

registrationLost

NULL -- Uncertain if call ended or not

}

UserInformation ::= SEQUENCE

{

userIdentifier
AliasAddress,

userAuthenticator
SEQUENCE OF CryptoH323Token OPTIONAL,

...

}

UsageSpecification ::= SEQUENCE

{

sendTo

ElementIdentifier,

when SEQUENCE

{

never

NULL OPTIONAL,

start

NULL OPTIONAL,

end

NULL OPTIONAL,

period
INTEGER(1..65535) OPTIONAL, -- in seconds

failures
NULL OPTIONAL,

...

},

required

SEQUENCE OF OBJECT IDENTIFIER,

preferred

SEQUENCE OF OBJECT IDENTIFIER,

...

}

PartyInformation ::= SEQUENCE

{

logicalAddresses
SEQUENCE OF AliasAddress,

domainIdentifier
AliasAddress OPTIONAL,

transportAddress
AliasAddress OPTIONAL,

endpointType
EndpointType OPTIONAL,

userInfo

UserInformation OPTIONAL,

timeZone

TimeZone OPTIONAL,

...

}

Role ::= CHOICE

{

originator

NULL,

destination

NULL,

nonStandardData
NonStandardParameter,

...

}

TimeZone ::= INTEGER (-43200..43200)
-- number of seconds relative to UTC

-- including DST if appropriate

TerminationCause ::= SEQUENCE

{

releaseCompleteReason

ReleaseCompleteReason,

causeIE

INTEGER (1..65535) OPTIONAL,

nonStandardData

NonStandardParameter OPTIONAL,

...

}

AnnexGVersion

::=
OBJECT IDENTIFIER

-- shall be set to

-- {itu-t (0) recommendation (0) h(8) h225.0(2250) Annex (1) G (7) version (0) 1}

DescriptorID

::=
GloballyUniqueID

ElementIdentifier
::=
BMPString (SIZE(1..128))

GlobalTimeStamp
::=
IA5String (SIZE(14))

-- UTC, in the form YYYYMMDDHHmmSS

-- where YYYY = year, MM = month, DD = day,

-- HH = hour, mm = minute, SS = second

-- (for example, 19981219120000 for noon

-- 19 December 1998)

END
-- of ANNEXG-MESSAGES

� BEs are assumed not to be hidden behind network address translation (NAT) devices, thus it is not required to prefer the transport address over the replyAddress, as is the case for RAS messages.

* Contact:
Michael Fortinsky

VocalTec Communications Ltd.
Tel:
972-9-9707768

Fax:
972-9-9561867

E-mail: mike@vocaltec.com

Tel:

Fax:

E-mail:

TSB:\ITU-T\SG16\WP2-16\2-XX.DOC

TSB:\ITU-T\SG16\WP2-16\2-XX.DOC

_975234805.doc

Administrative domain A

Administrative domain C

Administrative domain B

Administrative domain D

_1000648973.doc

Administrative domain A

1732*

Administrative domain C

1303538*

1303*

Administrative domain B

1908*

1908953*

_1011954108.doc

DescriptorIDRequest

DescriptorIDConfirmation(IDs=d2, d3)

DescriptorRequest (d2)

DescriptorConfirmation

DescriptorRequest (d3)

DescriptorConfirmation

DescriptorIDRequest

DescriptorIDConfirmation (IDs=d4, d5)

DescriptorRequest (d4)

DescriptorConfirmation

DescriptorRequest (d5)

DescriptorConfirmation

BE

A

BE

B

BE

C

_1011955105.doc

DescriptorIDRequest

DescriptorIDConfirmation(IDs=d1, d2, d3, d4)

DescriptorRequest (d3)

DescriptorConfirmation

DescriptorRequest (d4)

DescriptorConfirmation

DescriptorIDRequest

DescriptorIDConfirmation (IDs=d1, d2, d3, d4)

DescriptorRequest (d1)

DescriptorConfirmation

DescriptorRequest (d2)

DescriptorConfirmation

BE

D

BE

CH

BE

E

_1000648972.doc

Clearing house

1908*

1908953*

1303538*

1303*

Administrative domain E

1303538*

1303*

Administrative domain D

1908*

1908953*

_968128313.doc

Border element

Gateway

Border element

Gatekeeper

Gatekeeper

Gateway

Border element

_974868988.doc

Administrative domain A

Administrative domain D

Administrative domain C

Administrative domain B

_967550272.doc

Administrative domain D

Administrative domain C

Administrative domain B

Administrative domain A

_967551452.doc

Clearing

house

Administrative domain C

Administrative domain B

Administrative domain A

Administrative domain D

