ITU Telecommunication Standardization Sector
Document

Study Group 16

Q.12-14/16 Rapporteur Meeting
6 June, 1999

<Location>, <Month> 1999

SOURCE*:
Morgan Potter, BT

Pete Cordell, Tech-Know-Ware

TITLE:
A Package based Extensible Object-Oriented Framework for H.225.0
PURPOSE:
Discussion/Proposal

*Contact:
Morgan Potter, morgan.potter@bt.com

Introduction

This contribution proposes that H.225.0 needs to evolve into an extensible framework for exchanging protocol objects. This will provide a protocol that can be readily applied to the many problem spaces for which H.225.0 is currently being proposed.

The contribution discusses why this framework is required, and how it can be achieved.

What is Required?

To turn H.225.0 into an extensible object-oriented framework the protocol needs to support two characteristics. These are the ability to exchange arbitrary protocol fragments and the ability to negotiate the features that are needed and supported in various entities involved in the call.

Why is an Extensible Framework Required?

There are numerous reasons why an object framework should be adopted. These include the following:

1. Additions to the protocol can be made without continually having to re-write code from the bottom of the stack up. This allows the lower stack layers stabilise thus enhancing the reliability of H.225.0 implementations.

2. Allows implementations to support only those features that are specific to their requirements rather than having to cater for a super-set of all possible applications.

3. By defining new features as Annexes to H.225.0, new features can be added according to market needs rather than locking customer requirements into the standardisation cycle of the base documents.

4. Allow easy application of H.225.0 to environments that need encapsulation of other protocols such as SS7.

5. Allow ready synergy between H.225.0 and other control protocols such as IVR control.

6. Allow easy addition of new fields such as new number types. This may include number fields of the type “originally dialled number”, or “answering party number” which have no direct relevance to the core protocol, but may be of use to the end applications.

7. Allow negotiation of a light-weight variant of H.245 for media control.

8. Allows signalling to indicate that the special call handling should be implemented at the remote endpoint, such as loop back of media without alerting a user for remote device testing purposes.

9. Allows an entity to signal that it supports certain properties such as malicious call tracing. This is currently a legal requirement in a number switched networks and therefore will be a requirement in networks supporting toll-bypass. Such features may require security mechanisms to prove that such features are supported rather than directly trusting an entity.

For these reasons it is proposed that an extensible object framework be adopted.

Can the H.450.x Framework be Used?

The H.450.x framework appears to offer a number the requirements listed above. However, despite H.450.x being an excellent framework for supplementary services, it does not offer all the features required above. For this reason it is worth considering an alternative framework for meeting the above requirements. It should be emphasised however that such a framework does NOT replace H.450.x, but compliments it. Reasons for considering an alternative framework include:

1. H.450.x has no support in RAS.

2. Using the H.450.x framework to add small protocol extensions such as additional number types is not appropriate.

3. Signalling a light-weight H.245 variant for media control through H.450.x is not appropriate.

4. It may be appropriate to declare the set of H.450 services at the beginning of a call which the current H.450.x framework does not allow.

5. Certain H.450.x characteristics such as clearing a call, or rejecting a PDU when a service is not supported only work if the remote end implements the H.450.x framework. It would be advantageous if a more backwards compatible solution to this problem were in place.

For these reasons it is proposed that the extensible object framework is not based on H.450.x.

Implementation of an Extensible Object-Oriented Framework

The rest of this contribution describes the extensible object framework in a form that is suitable for inclusion in H.323 and H.225.

Text for H.323 V3

x.x.x.x Package based Extensible Object-Oriented Framework

H.323 Version 3 supports an extensible object-oriented framework that allows new features to be readily added to the protocol without affecting the underlying signalling. The extensible object framework consists of two parts:

1. Encapsulation of message fragments within H.225.0 messages,

2. H.225.0 negotiation of feature sets.

These are provided for both the call signalling and RAS parts of H.225.0.

Message fragments are included in H.225.0 call signalling and RAS messages in the form of packages. Packages are included in the calling signalling part of H.225.0 as a generalisation of the H.245 encapsulation/tunnelling mechanism without the markers that control whether the tunnel exists and when it is being closed. Support for packages is also included in all RAS messages except RIP.

A package primarily consists of an identifier and parameters. Both of these types consist of a number of different forms to allow flexibility. The package specification should describe which forms are used for a specific package. The Package structure consists of both parameters and extendedParameters. There is no semantic difference between these two fields. Both forms are included to allow efficient assembly and decoding of small package definitions while allowing large numbers of parameters to be used in large packages. Similarly, the shortRaw and shortText forms in the Content structure part are included to allow efficient assembly and decoding of packages that only contain a small amount of raw or text data. Normally, shortRaw should be considered semantically equivilent to raw, and shortText should be considered semantically equivilent to text. However, a package definition may over ride this.

In specifying a package it may be appropriate to specify some of the parameters as hints about what the main contents of the package is. These can give additional information describing the package so that the main contents of the package does not have to be fully decoded to see what it is. An example of where this technique may be used is in the encapsulation of SS7 messages within H.225.0. In such a scheme it may be appropriate to include an additional parameter which indicates the SS7 message included in the main part of the package. Alternatively additional parameter fields maybe used to store values such as hop-counts so that they can be updated without repeatedly decoding and encoding the main content of the package.

The basic feature description element used for both RAS and call signalling also uses the basic Package type. When requesting feature support from receiving entities it is necessary to also specify which of them must support the feature. The NeededFeature type achieves this by specifying the feature that is required and where the support is needed.

The mechanisms used to negotiate RAS and call signalling feature sets differ due to the different contexts of the two protocols.

In the case of RAS, special attention needs to be taken to ensure that RAS feature negotiation operates in a backwards compatible manner. This is because an entity of an earlier version responding to a request message will not see the fields that indicate needed support. For this reason the RAS confirm messages shall list the features that the responding entity supports and the requester shall check that the features that it requested are in the list. If a requesting entity receives a confirm response but does not receive an indication that the responding entity supports the requested features, then it shall undo the operation it was trying to perform (i.e. send an DRQ if it originally sent an ARQ and so forth). If a responding entity determines that it can not support the requested features then it shall send a corresponding reject message. In this event the features supported by the responder may be included in the reject message so that a future successful request may be attempted. Note also that the set of supportedFeatures signalled back in a confirmation message need not be limited to a subset of the requested neededFeatures in the request message. This allows a gatekeeper to express the set of features that it supports in the GCF and RCF messages.

In the case of the call signalling messages, there are two parts to the negotiation process; indicating what needs to be supported by the receiving entity/entities, and what the calling endpoint supports. Signalling of the features required by the receiving entities is done in the conferenceGoal sub-structure so that implementations prior to H.323 version 3 will reject the SETUP, thus achieving reliable backwards compatibility. To allow a conferenceGoal to be specified when remote features are required the neededFeatureGoal parameter includes the set of conferenceGoals.

Syntax changes for H.225 V3 Annex H

H323-UU-PDU ::= SEQUENCE

{

.

.

.

h245Tunneling

BOOLEAN,

h245Control

SEQUENCE OF OCTET STRING OPTIONAL,

nonStandardControl

SEQUENCE OF NonStandardParameter OPTIONAL

packages

SEQUENCE OF Package OPTIONAL

}

Package

::= CHOICE

{

id

GenericIdentifier,
-- Identifies the package

parameters

SEQUENCE (SIZE (1..4)) OF EnumeratedParameter OPTIONAL,

extendedParameters
SEQUENCE OF EnumeratedParameter OPTIONAL

...

}
-- Note that there is no semantic difference between the parameters and extendedParameters

-- fields in the Package structure. The two forms are included to allow efficient

-- assembly and decoding of packages that contain small numbers of parameter while allowing

-- other packages to contain large numbers of parameters.
GenericIdentifier
::= CHOICE

{

standard
INTEGER(0..65535),

nonStandard
GloballyUniqueID,

...

}

EnumeratedParameter
::= SEQUENCE

{

id

GenericIdentifier,

content
Content OPTIONAL,

...

}

Content

::= CHOICE

{

raw

OCTET STRING,
-- Typically PER encoded ASN.1 but may also be TLV

-- or a message from another signalling protocol.

-- It is recommended that any package containing more

-- than 3 or 4 parameters use this or the shortRaw form

-- with PER encoded ASN.1.

shortRaw
OCTET STRING(SIZE(1..80)),

text

IA5String,

shortText
IA5String(SIZE(1..80)),
-- Allows a more efficient representation

-- of short text items

unicode

BMPString,

number8

INTEGER(0..255),

number16
INTEGER(0..65535),

number32
INTEGER(0..4294967295),

compound
SEQUENCE OF EnumeratedParameter,

...

}
-- Note that the shortRaw and shortText forms in the Content structure are included to allow

-- efficient assembly and decoding of packages that only contain a small amounts of raw or

-- text data. shortRaw should be considered semantically equivilent to raw, and shortText

-- should be considered semantically equivilent to text. Note, however, that a package

-- definition may over ride this.
Setup-UUIE ::= SEQUENCE

{

.

.

.

activeMC

BOOLEAN,

conferenceID

ConferenceIdentifier,

conferenceGoal

CHOICE

{

create

NULL,

join

NULL,

invite

NULL,

...,

capability-negotiation

NULL,

callIndependentSupplementaryService
NULL,

neededFeature

NeededFeatureGoal

},

callServices

QseriesOptions OPTIONAL,

callType

CallType,

...,

.

.

.

connectionParameters
SEQUENCE
-- additional gateway parameters

{

connectionType

ScnConnectionType,

numberOfScnConnections
INTEGER (0..65535),

connectionAggregation
ScnConnectionAggregation,

...,

} OPTIONAL,

desiredFeatures
SEQUENCE OF NeededFeature OPTIONAL,

supportedFeatures
SEQUENCE OF Package OPTIONAL,
}

NeededFeatureGoal
::= SEQUENCE

{

basicGoal
CHOICE

{

create

NULL,

join

NULL,

invite

NULL,

capability-negotiation

NULL,

callIndependentSupplementaryService
NULL,

...

} OPTIONAL,

-- Absence means none of the above

features
SEQUENCE OF NeededFeature,

...

}

NeededFeature

::= SEQUENCE

{

feature

Package,
-- Includes name and parameters

neededInEndpoint

BOOLEAN,

neededInFirstIntermediary
BOOLEAN,
-- Intermediary could be a gatekeeper etc

neededInAnyIntermediary
BOOLEAN,
-- At least one intermediary on the

-- signalling path must support the feature

-- before it is presented to an endpoint

neededInFinalIntermediary
BOOLEAN,

neededInAllIntermediaries
BOOLEAN,

...

}

ReleaseCompleteReason ::= CHOICE

{

.

.

.

newConnectionNeeded

NULL,

nonStandardReason

NonStandardParameter,

packageSpecificReason

NULL,

-- Reason included in a package parameter

featureMisMatch

SEQUENCE

{

notSupported
SEQUENCE OF Package,
-- The set of unsupported features

supported
SEQUENCE OF Package,
-- Features that rejecting

-- entity supports that might help

-- calling endpoint achieve its task.

neededSupport
SEQUENCE OF NeededFeature, -- The set of features a calling

-- endpoint needs to support before

-- the call can be accepted

...

}

-- Indicates that a requested feature is not supported
}

The following syntax should be added to all RAS messages except RIP:

packages

SEQUENCE OF Package OPTIONAL,

neededFeatures

SEQUENCE OF NeededFeature OPTIONAL,

supportedFeatures
SEQUENCE OF Package OPTIONAL,

Semantic additions for the body of H.225 V3

Under conferenceGoal in Setup:
neededFeature - Indicates features that a receiving entity must support in order to accept the call. An endpoint can specify which features are required and in which entities on the signalling path they must be supported.

In Setup:

desiredFeatures – The set of features that a calling endpoint would like entities further along the signalling chain to support but are not essential for the call to succeed.

supportedFeatures – The set of features that the calling endpoint supports and has chosen to declare.

The following semantics should be added to all RAS messages except RIP:

packages – Carries zero, one or more extensible packages in the message.

neededFeatures – The set of features that the calling endpoint needs to be supported in entities along the call path.

supportedFeatures – The set of features that the calling endpoint supports and has chosen to declare.

Conclusions

This contribution shows that there are numerous messaging elements a call signalling protocol may include. However, it argues that the core protocol should not be constantly re-issued in order to add these features. It also argues that to be successful, a call signalling protocol must be able to negotiate additional features prior to a call being placed to an end user. As this negotiation must all take place in the SETUP message, there are two parts to this negotiation process; declaring what can be supported by the sending endpoint, and what must be supported by the receiving endpoint.

This document shows how these features may be supported in H.225.0 in a flexible, open and backwards compatible way using minimal additional syntax. It is proposed that this mechanism be added to H.323 Version 3.

