ITU Telecommunication Standardization Sector	Document APC-1522�Study Group 16	05 February 1999�Q.12-14/16 Rapporteur Meeting�Monterey, 15-19 February 1999

SOURCE:	Dave Walker, Mitel Corporation�email: dave_walker@mitel.com�voice: +1 613 592 2122

TITLE:	Additions to the H.323 Implementors Guide �

PURPOSE:	Proposal

This contribution suggests several clarifications and corrections to version 2 of the H.323 family of recommendations.

1. H.245 Tunneling

The ability to tunnel H.245 PDUs inside H.225.0 call signalling messages provides a high level of flexibility. The h245control element, which is the tunneling mechanism, allows for multiple H.245 PDUs to be sent in a single H.225.0 message.

However, the order in which H.245 PDUs are encapsulated and extracted from the tunnel is left undefined. In many cases this presents no problem, but in some instances where H.245 procedures are being executed in parallel message order becomes significant.

For example, H.323 currently requires that a Terminal Capability Set message be the first H.245 message sent. In order to provide for optimal messaging, it is desirable that a Master-Slave Determination message be sent through the tunnel at the same time. For this to be successful, the encapsulating endpoint must know the order in which the destination will process the encapsulated H.245 PDUs.

Therefore, it is proposed that the following amendment to H.323 section 8.2.1 be added to the H.323 version 2 Implementor’s Guide:

When an endpoint receives an h245control element encapsulating more than one H.245 PDU, the encapsulated H.245 PDUs shall be processed (i.e. provided to higher layers) sequentially by order of increasing offset from the beginning of the H.225.0 message.

2. Endpoint Registration

The fourth paragraph of Section 7.2.2 of H.323 version 2 refers repeatedly to “previous RRQ”. Literal interpretation of these references is incorrect. For example, the second sentence reads, “If a Gatekeeper receives an RRQ having the same alias address and the same Transport Address as a previous RRQ, it shall respond with RCF.” This means that if an endpoint re-sends an RRQ to a particular Gatekeeper after receiving an RRJ for its initial RRQ, the Gatekeeper must send the endpoint an RCF. All of the references to “a previous RRQ” should be replaced by “an active registration”.

The fifth paragraph of Section 7.2.2 describes use of the Time To Live timer in association with the keepAlive re-registration. Several clarifications are proposed for inclusion in the Implementors Guide:

If the Gatekeeper does not include a timeToLive value in the RCF, it is not supporting the keep-alive mechanism. In this case, endpoints sending keep-alive RRQs should include sufficient information for full registration.

Endpoints should consider messaging and processing delays when determining when their registration will expire (i.e. the duration of their own time-to-live timer) at the Gatekeeper.

Expiration of the time-to-live timer in the Gatekeeper results in the expiration of the registration of the endpoint. A Gatekeeper may send a URQ to the endpoint as a notification of such expiration. This allows for loss of synchronisation between the time-to-live timers of the Gatekeeper and the endpoint. It also indicates a need for re-registration to endpoints which do not support the keep-alive mechanism.

An endpoint which sends a lightweight RRQ to its Gatekeeper after the time-to-live timer has expired in the Gatekeeper will receive an RRJ response with rejectReason of discoveryRequired unless the lightweight RRQ contained sufficient information for a full registration, in which case the RRQ shall be considered as such.

An endpoint which sends an ARQ to its Gatekeeper after the time-to-live timer has expired in the Gatekeeper will receive an ARJ with rejectReason of either callerNotRegistered or calledPartyNotRegistered. An endpoint which initiates a new call through its Gatekeeper after expiration of the Gatekeeper’s time-to-live timer will receive a ReleaseComplete message with a releaseCompleteReason of callerNotRegistered or calledPartyNotRegistered.

Disposition of existing calls upon expiration of the time-to-live timer is implementation dependent.

The table in Section 7.19 of H.225.0 version 2 should contain the following note associated with the RRQ message:

The time-out value should be recalculated based on the time-to-live which may be indicated by the Gatekeeper in the RCF message and the desired number of retries.

3. Consistency of Signalling Descriptions

With the introduction of the Fast Connect procedure, there now exists applicable text in the H.323 recommendations that is incorrect or incomplete. In order to present correct and consistent descriptions of the signalling procedures, this section proposes several changes for inclusion in the H.323 version 2 Implementor’s Guide.

3.1. Transport Addresses

With the introduction of the Fast Connect, it is no longer necessary to depend solely upon the openLogicalChannelAck message to determine the Transport Address that will be used by an endpoint for receiving audiovisual streams.

Because the destination transport address may be signalled to the transmitting endpoint in the reverseLogicalChannelParameters of an OpenLogicalChannel structure, H.323 section 8.3 should read:

The openLogicalChannelAck message returns, or the reverseLogicalChannelParameters of the openLogicalChannel message contains, the Transport Address that the receiving endpoint has assigned to that logical channel. The transmitting channel shall then send the information stream associated with the logical channel to that Transport Address.

Section 7.3.1 of H.245 version 3, “Open Logical Channel”, where describing H2250LogicalChannelParameters, should read (in part):

The mediaChannel indicates a transportAddress to be used for the logical channel. When the transport is unicast, mediaChannel It is not present in the OpenLogicalChannel message when the transport is unicast forwardLogicalChannelParameters, but may be present in the reverseLogicalChannelParameters. If the transportAddress is multicast, the master is responsible for creating the multicast transport address and shall include the address in the OpenLogicalChannel message. A slave entity that wishes to open a new multicast channel will provide zeroes in the multicast transportAddress field. The master will create and provide the multicast transportAddress in the OpenLogicalChannelAck message for the slave entity. Note that the MC will use the communicationModeCommand to specify the details about all the RTP Sessions in the conference.

Section 7.3.2 of H.245 version 3, “Open Logical Channel Acknowledge”, where describing H2250LogicalChannelAckParameters, should read (in part):

The mediaChannel indicates a transportAddress to be used for the logical channel. It shall be present in the OpenLogicalChannelAck message when the transport is unicast except where the OpenLogicalChannel message specified a reverse unicast mediaChannel. If the transportAddress is multicast, the master is responsible for creating the multicast transport address and shall include the address in the OpenLogicalChannel message. A slave entity that wishes to open a new multicast channel will provide zeroes in the multicast transportAddress field. The master will create and provide the multicast transportAddress in the OpenLogicalChannelAck message for the slave entity. Note that the MC will use the communicationModeCommand to specify the details about all the RTP Sessions in the conference.

3.2. Terminal Capabilities

The Fast Connect procedure allows endpoints to determine certain capabilities of peer endpoints in the absence of the full disclosure provided by the H.245 capabilities exchange procedure. This should be reflected in H.245 section 7.3.1, Open Logical Channel under the description of the dataType parameter, where the following text should be added:

Capabilities not previously indicated by an endpoint in a Terminal Capability Set message may be specified in the dataType parameter. In this case, the receiving endpoint may consider that the sending endpoint has the specified capabilities, and furthermore, simultaneous capabilities may be indicated by the dataType of any logical channels associated with this request through the use of the associatedSessionID parameter.

Similar text should also be added to section 7.2.1, (terminal capability messages) Overview.

3.3. H.245 Logical Channel Signalling Procedures

The descriptions of the signalling procedures in H.245 should be changed to reflect Fast Connect type procedures. Specifically, the use of fields associated with reverse logical channels for establishing audiovisual streams from called to calling party requires changes to the description of bi-directional logical channel signalling procedures (section 8.5).

Section 8.5.1 should be changed to:

A bi-directional logical channel consists of a pair of associated uni-directional channels. "Forward" (Outgoing side) is used to refer to transmission in the direction from the terminal making the request for a bi-directional logical channel to the other terminal, and "reverse" (Incoming side) is used to refer to the opposite direction of transmission. Note that one of the two channels may use a dataType of nullData, in which case only a single uni-directional channel is opened. If such a single channel is requested in the reverse direction, the outgoing side shall nonetheless assign a forwardLogicalChannelNumber in the OpenLogicalChannel message to be used to identify subsequent messages related to the request, and the incoming side shall indicate acceptance of the proposed reverse channel by sending an OpenLogicalChannelAck message containing the same forwardLogicalChannelNumber and assigning a reverseLogicalChannelNumber in the reverseLogicalChannelParameters.

Data shall only be sent on a bi-directional logical channel in the ESTABLISHED state. However, data may be received on the forward channel and sent on a proposed and acknowledged reverse channel (if available) when the incoming B-LCSE is in the AWAITING CONFIRMATION state. Data that is received while in other states than the ESTABLISHED state and the AWAITING CONFIRMATION state shallshould be discarded and no fault shall be considered to have occurred.

A terminal may reject a request to open a bi-directional logical channel solely because it can not support the requested reverse channel parameters. In this case it shall reject the request with cause equal to unsuitableReverseParameters, and shall, if possible, immediately initiate procedures to establish a bi-directional logical channel as requested by the remote terminal, in which the reverse parameters are identical to the forward parameters of the remote terminal's failed request, and with forward parameters that the terminal can support and which the remote terminal is known to be able to support.

3.4. Logical Channel Alternatives

The Fast Connect procedure allows for alternative media streams to be proposed in a prioritized manner, identifying acceptable alternatives by a tuple containing sessionID, mediaChannel, and mediaControlChannel. This is an adequate approach for RTP-based logical channels. It is desirable to be able to propose alternative logical channels where H.245 signalling is being used. However, it is not possible to adopt the Fast Connect solution as it provides no indication within the first OLC structure that alternatives will be proposed.

This section does not propose replacement text. Rather several solutions are described. It is a matter for discussion whether such a change may be applied through the Implementors Guide, or deferred to future revisions of the H.323 and H.245 recommendations.

Solution 1 - Use of replacementFor element

The replacementFor element is used to specify that the requested logical channel is a replacement for an existing, already open logical channel, i.e. one that is in the ESTABLISHED state. However, its name suggests, and encoding allows, that it can be used to indicate alternatives. The mechanism could work as follows:

The first possible alternative Open Logical Channel request is identified by its forwardLogicalChannelNumber (fwdLCN1). It indicates that this is the first (therefore preferred) alternative by setting the replacementFor parameter to fwdLCN1. The receiver of an Open Logical Channel so constructed need not immediately accept the request. Subsequent alternatives (in order of decreasing preference) are indicated by setting the replacementFor parameter to fwdLCN1.

An issue with this solution is how the receiving endpoint recognizes that the end of the list has been reached. A suitably short time-out value could be used, which would work well when all alternatives are sent through an H.245 tunnel. When used on a separate H.245 connection, messaging delays become a factor. A longer time-out value could be used in association with an “OLC=0” message (i.e. an Open Logical Channel whose forward and reverse dataTypes are both set to nullData) to explicitly signal the end of the list.

In order to comply with H.245 procedures, an Open Logical Channel Reject message should be sent for each alternative not chosen.

Solution 2 - Definition of a new Open Logical Channel parameter

Inclusion of such a parameter would indicate that the request is one of several alternatives. The parameter fields should include the priority of the request and the total number of alternatives. A time-out value and the use of Open Logical Channel Reject messages are still required.

Solution 3 - Extension of the dataType parameter

This is the preferred solution. A new choice is added to the DataType which allows multiple alternatives to be specified in a single Open Logical Channel message, requiring no timer, and only a single response. The transport address specified by the mediaChannel should be ready to receive any of the alternatives.

The new definition would be:

|		DataAlternatives ::= CHOICE�|		{�|				videoData						SEQUENCE OF VideoCapability,�|				audioData						SEQUENCE OF AudioCapability,�|				data										SEQUENCE OF DataApplicationCapability,�|				...�|		}��DataType ::= CHOICE�{�		nonStandard					NonStandardParameter,�		nullData								NULL,�		videoData							VideoCapability,�		audioData							AudioCapability,�		data											DataApplicationCapability,�		encryptionData			EncryptionMode,�		...,�		h235Control					NonStandardParameter,�		h235Media						H235Media,�|		dataAlternatives			DataAlternatives�}

