- 99 -

TD xxx (WP 2/16)

	Rapporteur Meeting of Question 13/16
	AVD-XXXX

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2009-2012
	STUDY GROUP 16

	
	Original: English

	Question(s):
	13/16
	Seoul, 13-17 April 2009

	RAPPORTEUR MEETING DOCUMENT

	Source:
	Editors

	Title:
	Proposed Modifications on Draft New Recommendation H.IPTV-MAFR.14 Lua for IPTV Services

	Purpose:
	Proposal

Summary

This contribution proposes modifications to the current text of Draft New Recommendation H.IPTV-MAFR.14 Lua for IPTV Services.
1 Introduction

The Draft New Recommendation on the scripting language LUA for IPTV Services, H.IPTV-MAFR.14, was created at the last Study Group 16 Meeting, held in Geneva from 27th of January to 06th of February 2009 (the temporary document TD-140r1/WP2 contains the current draft).

This contribution proposes modifications to the Recommendation structure and adds text on modules common for both H.761 and H.IPTV-MAFR.14, to assure compatibility between these Recommendations, when they are used together.
2 Discussion

The purpose of this contribution is to clarify the relationship between the Recommendations H.761 and H.IPTV-MAFR.14 and restrict some Lua functionalities to IPTV Services, for security reasons.

Additionally, the modules canvas, event and persistent are defined to specify some basic functionalities that are needed in an implementation alongside NCL and Ginga-NCL, as specified in H.761.

3 Proposal

This contribution proposes modifications to the Draft New Recommendation H.IPTV-MAFR.14. The new text of the draft Recommendation is presented below with revision marks.

The revision marks are against the temporary document TD 140r1/WP2 from the Study Group 16 Meeting held on Geneva, from 27 January to 06 February 2009.

The following updates are proposed:

· Send all the text related to the specification of the Lua Scripting Language to Annex I;

· Minor editorial revisions;

· Remove some functions from Modules Package, IO, OS, Debug;

· Specify Modules Canvas, Event and Persistent in the context of Lua support for IPTV Services.

--------------------Beginning of Proposed Text--------------------

	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 16

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2009-2012
	TD 140 R1 (WP 2/16)

	
	English only

Original: English

	Question(s):
	13/16
	Geneva, 27 January - 6 February 2009

	TEMPORARY DOCUMENT

	Source:
	Editor H.IPTV-MAFR.14

	Title:
	Draft new ITU-T Recommendation H.IPTV-MAFR.14 “Lua for IPTV Services”

This is the revised draft Recommendation H.IPTV-MAFR.14 “Lua for IPTV Services”, as of April 2009.
AAP Summary

[To be provided before Consent]
Draft new ITU-T Recommendation H.IPTV-MAFR.14

Lua for IPTV Services
Summary

This is the draft new Recommendation on Lua for IPTV Services.
Lua is an extension programming language designed to support general procedural programming with data description facilities. It also offers good support for object-oriented programming, functional programming, and data-driven programming. Lua is intended to be used as a powerful, lightweight scripting language for any program that needs one. Lua is implemented as a library, written in clean C (that is, in the common subset of ANSI C and C++).

Because of its simplicity, efficiency and its powerful data description syntax, Lua was considered the natural scripting language for Ginga-NCL [ITU-T H.761]. The Lua engine is small and written in ANSI/C making it easily portable to several hardware platforms. The Lua engine is distributed as free software under the MIT license.

Contents
81
Scope

2
References
8
3
Definitions
8
4
Abbreviations and Acronyms
8
5
The LUA Scripting Language
9
6
Functions removed from Lua library
9
7
Lua API extensions for IPTV Services
9
7.1
The canvas module
10
7.1.1
The canvas object
10
7.1.2
Constructors
10
7.1.3
Attributes
11
7.1.4
Primitives
15
7.1.5
Miscellaneous
17
7.2
The event module
19
7.2.1
Functions
20
7.2.2
Event classes
21
7.3
The persistent module
26
Annex I
Lua Specification
27
I.1
The language
27
I.1.1
Used Notation
27
I.1.2
Lexical conventions
27
I.1.3
Values and types
29
I.1.3.1
Basic Types
29
I.1.3.2
Coercion
29
I.1.4
Variables
30
I.1.5
Statements
31
I.1.5.1
Basic Concepts
31
I.1.5.2
Chunks
31
I.1.5.3
Blocks
31
I.1.5.4
Assignment
31
I.1.5.5
Control structures
32
I.1.5.6
For statement
33
I.1.5.7
Function calls as statements
34
I.1.6
Expressions
34
I.1.6.1
Basic Expressions
34
I.1.6.2
Arithmetic operators
35
I.1.6.3
Relational operators
35
I.1.6.4
Logical operators
36
I.1.6.5
Concatenation
36
I.1.6.6
The length operator
36
I.1.6.7
Precedence
37
I.1.6.8
Table constructors
37
I.1.6.9
Function calls
38
I.1.6.10
Function definitions
38
I.1.7
Visibility rules
40
I.1.8
Error handling
41
I.1.9
Metatables
41
I.1.10
Environments
45
I.1.11
Garbage collection
46
I.1.11.1
Basic Concepts
46
I.1.11.2
Garbage-Collection metamethods
46
I.1.11.3
Weak tables
46
I.1.12
Coroutines
47
I.2
The application program interface
48
I.2.1
Basic Concepts
48
I.2.2
The stack
48
I.2.3
Stack size
49
I.2.4
Pseudo-indices
49
I.2.5
C Closures
49
I.2.6
Registry
49
I.2.7
Error handling in C
50
I.2.8
Functions and types
50
I.2.9
The debug interface
65
I.3
The auxiliary library
69
I.3.1
Basic Concepts
69
I.3.2
Functions and types
69
I.4
Standard libraries
76
I.4.1
Overview
76
I.4.2
Basic functions
76
I.4.3
Coroutine manipulation
81
I.4.4
Modules
81
I.4.5
String manipulation
83
I.4.6
Table manipulation
88
I.4.7
Mathematical functions
89
I.4.8
Input and output facilities
89
I.4.9
Operating system facilities
92
I.4.10
The debug library
94
I.5
Lua Stand-alone
96
I.6
Incompatibilities with the version 5.0
97
I.6.1
Changes in the language
97
I.6.2
Changes in the libraries
97
I.6.3
Changes in the API
98
I.7
The complete syntax of Lua
98

(Full text available only in the electronic version)

Draft new ITU-T Recommendation H.IPTV-MAFR.14

Lua for IPTV Services
1 Scope

This Recommendation specifies the LUA scripting language to provide interoperability and harmonization among IPTV multimedia application frameworks. To provide global standard IPTV services, it is foreseeable that a combination of different standard multimedia application frameworks will be used. Therefore, this Recommendation specifies the LUA Language, as one of those standard multimedia application frameworks, to provide interoperable use of IPTV services.

Ginga-NCL [ITU-T H.761] is a presentation engine that integrates NCL and Lua players into a declarative environment. NCL and Lua frameworks can be used independently in other declarative environments, but if they are used together they shall follow Ginga-NCL specification.

2 References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this document. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this document are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[REFERENCES NEED TO BE ADDED HERE]
[ITU-T H.750]
Recommendation ITU-T H.750 (2008), “High-level specification of metadata for IPTV services”.
[ITU-T H.761]
Recommendation ITU-T H.761 (2009), “Nested Context Language (NCL) and Ginga-NCL for IPTV Services”.

3 Definitions

3.1
This working document uses the following terms defined elsewhere:

TBD
3.2
This working document defines the following terms:

TBD
4 Abbreviations and Acronyms

This Recommendation uses the following abbreviations and acronyms.
TBD
5 The LUA Scripting Language
Lua is an extension programming language designed to support general procedural programming with data description facilities. It also offers good support for object-oriented programming, functional programming, and data-driven programming. Lua is intended to be used as a powerful, lightweight scripting language for any program that needs one. Lua is implemented as a library, written in clean C (that is, in the common subset of ANSI C and C++).

Being an extension language, Lua has no notion of a "main" program: it only works embedded in a host client, called the embedding program or simply the host. This host program may invoke functions to execute a piece of Lua code, may write and read Lua variables, and may register C functions to be called by Lua code. Through the use of C functions, Lua may be augmented to cope with a wide range of different domains, thus creating customized programming languages sharing a syntactical framework. The Lua distribution includes a sample host program called lua, which uses the Lua library to offer a complete, stand-alone Lua interpreter.

Lua is free software, and is provided as usual with no guarantees, as stated in its license. The implementation described in this manual, as well as some technical papers, are available at Lua's official web site, http://www.lua.org.

Annex A presents the Lua specification as a general-purpose language. The implementation of Lua for IPTV Services shall follow the restritcions stated in Section 6 and the extensions described in Section 7.
6 Restricted functionalities in Lua for IPTV Services
6.1 Functions removed from Lua library

The following functions are platform dependent and shall be removed from Lua libraries (see Annex I.4) in conformant implementations:

1) from module package: loadlib;

2) from module io: all functions;

3) from module os: clock, execute, exit, getenv, remove, rename, tmpname and setlocale;

4) from module debug: all functions.

7 Lua API extensions for IPTV Services

Besides the Lua standard library, the following modules shall be present and automatically loaded in a conformant implementation:

1) module canvas: offers an API to draw graphical primitives and manipulate images;

2) module event: allows Lua applications to communicate with the middleware through events;
3) module persistent: exports a table with persistent variables, which may be manipulated only by imperative objects.
The definition of each function in the above modules uses the following naming convention:

funcname (parnameI: partypeI [; optnameI: opttypeI]) -> retname: rettype

7.1 The canvas module

7.1.1 The canvas object

A canvas offers a graphical API to be used in a Lua application. Using the API, it is possible to draw lines, rectangles, font, images, etc.

A canvas keeps in its state a set of attributes under which the drawing primitives operate. For instance, if its color attribute is blue, a call to canvas:drawLine() will draw a blue line on the canvas.
A global variable called canvas is available after the initialization of a Lua application, representing a graphic region with size and coordinates equal to the display information given to the Lua interpreter.
The coordinates are always relative to the top/leftmost point in canvas (0,0).

7.1.2 Constructors

From any canvas object, it is possible to create new canvas and combine them through composite operations.

	canvas:new (image_path: string) -> canvas: object

Arguments

image_path
Image path

Return values

canvas
Canvas representing the image

Description

Retorns a new canvas whose content is the image received as a parameter.

The new canvas shall keep the transparency aspects of the original image.

	canvas:new (width, height: number) -> canvas: object

Arguments

width
Canvas width

height
Canvas height

Return values

canvas
New canvas

Description

Returns a new canvas with the received size.

Initially, all pixels shall be transparent.

7.1.3 Attributes

All attribute methods have the prefix “attr” and are used to get and set attributes (with the exceptions specified).

When a method is invoked without input parameters, the current attribute value is returned. On the other hand, when a method is invoked with input parameters, these parameters must be used as the new attribute values.

	canvas:attrSize () -> width, height: number

Arguments

Return values

width
Canvas width

height
Canvas height

Description

Returns the canvas dimensions.

It is important to note that it is not possible to change the dimensions of an existing canvas.

	canvas:attrColor (R, G, B, A: number)

Arguments

R
Color red component

G
Color green component

B
Color blue component

A
Color alpha component

Description

Change canvas’ attribute color.

The colors are given in RGBA, where A varies from 0 (full transparency) to 255 (full opacity).

The primitives (see 7.1.4) are drawn with the color set to this attribute.

The initial value is ‘0,0,0,255’ (black).

	canvas:attrColor (clr_name: string)

Arguments

clr_name
Color name

Change canvas’ attribute color.

The colors are given as a string corresponding to one of the 16 pre-defined colors:

'white', 'aqua', 'lime', 'yellow', 'red', 'fuchsia', 'purple', 'maroon',

'blue', 'navy', 'teal', 'green', 'olive', 'silver', 'gray', 'black'

The values given have their alpha equal to full opacity (“A = 255”).

The primitives (see 7.1.4) are drawn with the color set in this attribute.

The initial value is ‘black’.

	canvas:attrColor () -> R, G, B, A: number

Return values

R
Color red component

G
Color green component

B
Color blue component

A
Color alpha component

Description

Retorns the canvas’ color.

	canvas:attrFont (face: string; size: number; style: string)

Arguments

face
Font name

size
Font size

style
Font style

Description

Changes canvas’ font attribute.

The following fonts shall be available: ‘Tiresias’ and ‘Verdana’.

The size is in pixels, and it represents the maximum height of a line written with the chosen font.

The possible style values are: 'bold', 'italic', 'bold-italic' and ‘nil’. A ‘nil’ value assumes that no style will be used.
Any invalid input value shall raise an error.

The initial font value is undefined.

	canvas:attrFont () -> face: string; size: number; style: string

Return values

face
Font name

size
Font size

style
Font style

Description

Returns the canvas font.

	canvas:attrClip (x, y, width, height: number)

Arguments

x
Clipping area coordinate

y
Clipping area coordinate

width
Clipping area width

height
Clipping area height

Description

Changes the canvas clipping area.

The drawing primitives (see 7.1.4) and the method canvas:compose() only operate inside this clipping region.

The initial value is the whole canvas.

	canvas:attrClip () -> x, y, width, height: number

Return values

x
Clipping area coordinate

y
Clipping area coordinate

width
Clipping area width

height
Clipping area height

Description

Returns the canvas clipping area.

	canvas:attrCrop (x, y, w, h: number)

Arguments

x
Crop region coordinate

y
Crop region coordinate

w
Crop region width

h
Crop region height

Description

Changes the canvas crop region.

Only the set region is affected by operations following graphical compositions.

The initial crop region is the whole canvas.

	canvas:attrCrop () -> x, y, w, h: number

Return values

x
Crop region coordinate

y
Crop region coordinate

w
Crop region width

h
Crop region height

Description

Returns the canvas crop region.
The main canvas (canvas global variable) cannot have its crop region changed as it may be controlled by other middleware components.

	canvas:attrFlip (horiz, vert: boolean)

Arguments

horiz
If canvas should be flipped horizontally

vert
If canvas should be flipped vertically

Description

Sets the canvas flipping mode used when the canvas is composed.
The main canvas (canvas global variable) cannot be flipped as it may be controlled by other middleware components.

	canvas:attrFlip () -> horiz, vert: boolean

Return values

horiz
If canvas is flipped horizontally

vert
If canvas is flipped vertically

Description

Returns the current canvas’ flipping setup.

	canvas:attrOpacity (opacity: number)

Argument

opacity
Canvas opacity

Description

Changes canvas opacity.

The opacity values varies between 0 (full transparency) to 255 (full opacity).
The main canvas (canvas global variable) cannot have its opacity value changed as it may be controlled by other middleware components.

	canvas:attrOpacity () -> opacity: number

Return value

opacity
Canvas opacity

Description

Returns the current canvas opacity.

	canvas:attrRotation (degrees: number)

Argument

degrees
Canvas rotation in degrees.

Description

Sets the canvas rotation attribute that must be multiple of 90o.
The main canvas (canvas global variable) cannot be rotated as it may be controlled by other middleware components.

	canvas:attrRotation () -> degrees: number

Return value

degrees
Canvas rotation in degrees

Description

Returns the current canvas rotation value.

	canvas:attrScale (w, h: number)

Arguments

w
Canvas scaling height

h
Canvas scaling width

Description

Scales the canvas by given width and height.

One of the given values may be true, indicating that the aspect ratio must be kept.

The scaling attribute is independent of the size attribute, which shall remain the same.
The main canvas (canvas global variable) cannot have its dimensions changed as it may be controlled by other middleware components.

	canvas:attrScale () -> w, h: number

Return values

w
Canvas scaling width

h
Canvas scaling height

Description

Returns the current canvas scaling values.

7.1.4 Primitives

All the following methods take the canvas attributes into account.

	canvas:drawLine (x1, y1, x2, y2: number)

Arguments

x1
Line extremity 1 coordinate

y1
Line extremity 1 coordinate

x2
Line extremity 2 coordinate

y2
Line extremity 2 coordinate

Description

Draws a line with its extremities in (x1,y1) and (x2,y2).

	canvas:drawRect (mode: string; x, y, width, height: number)

Arguments

mode
Drawing mode

x
Rectangle coordinate

y
Rectangle coordinate

width
Rectangle width

height
Rectangle height

Description

Method for rectangle drawing and filling.

The parameter mode may receive 'frame' or ‘fill’ values, for drawing the rectangle with no-fill or filling it, respectively.

	canvas:drawRoundRect (mode: string; x, y, width, height, arcWidth, arcHeight: number)

Arguments

mode
Drawing mode

x
Rectangle coordinate

y
Rectangle coordinate

width
Rectangle width

height
Rectangle height

arcWidth
Rounded edge arc width

arcHeight
Rounded edge arc height

Description

Function for rounded rectangle drawing and filling.

The parameter mode may be 'frame' in order to draw the rectangle frame or 'fill' to fill it.

	canvas:drawPolygon (mode: string) -> drawer: function

Arguments

mode
Drawing mode

Return values

f
Drawing function

Description

Method for polygon drawing and filling.

The parameter mode may receive the 'open' value, to draw the polygon not linking the last point to the first; the 'close' value, to to draw the polygon linking the last point to the first; or the 'fill' value, to draw the polygon linking the last point to the first and painting the region inside.

The function canvas:drawPolygon returns an anonymous function “drawer” with the signature:

function (x, y) end

The returned function, receives the next polygon vertex coordinates and returns itself as the result. This recurrent procedure allows the idiom:

canvas:drawPolygon('fill')(1,1)(10,1)(10,10)(1,10)()

When the function "drawer" receives ‘nil’ as input, it completes the chained operation. Any subsequent call shall raise an error.

	canvas:drawEllipse (mode: string; xc, yc, width, height, ang_start, ang_end: number)

Arguments

mode
Drawing mode

xc
Ellipse center

yc
Ellipse center

width
Ellipse width

height
Ellipse height

ang_start
Starting angle

ang_end
Ending angle

Description

Draws an ellipse and other similar primitives as circle, arcs and sectors.

The parameter mode may receive ‘arc’ to only draw the circunference or ‘fill’ for internal painting.

	canvas:drawText (x, y: number; text: string)

Arguments

x
Text coordinate

y
Text coordinate

text
Text do be drawn

Description

Draws the given text at (x,y) in the canvas, using the font set by canvas:attrFont().

7.1.5 Miscellaneous

	canvas:clear ([x, y, w, h: number])

Arguments

x
Clear area coordinate

y
Clear area coordinate

w
Clear area width

h
Clear area height

Description

Clears the canvas with the color set to attrColor.

If the area parameters are not given, all the canvas should be cleared.

	canvas:flush ()

Description

Flushes the canvas after a set of drawing and composite operations.

It is enough to call this method only once, after a sequence of operations.

canvas:compose (x, y: number; src: canvas; [src_x, src_y, src_width, src_height: number])

Arguments

x
Position of the composition

y
Position of the composition

src
Canvas to compose with

src_x
Position in the canvas src

src_y
Position in the canvas src

src_width
Composition width in the canvas src

src_height
Composition height in the canvas src

Description

Composes pixel by pixel the canvas src on the current canvas (destination canvas) at position (x,y).

The other parameters are optionals and indicate which region in the canvas src is used to compose with. When absent the whole canvas is used.

This operation calls src:flush() automatically before the composition.

The operation satisfies the following equation:

Cd = Cs*As + Cd*(255 - As)/255

Ad = As*As + Ad*(255 - As)/255

where:

Cd = color of the destination canvas (canvas)

Ad = alpha of the destination canvas (canvas)

Cs = color of the source canvas (src)

As = alpha of the source canvas (src)

After the operations the destination canvas has the resulting content and the canvas src remains intact.

	canvas:pixel (x, y, R, G, B, A: number)

Arguments

x
Pixel position

y
Pixel position

R
Color red component

G
Color green component

B
Color blue component

A
Color alpha component

Description

Changes the pixel color.

	canvas:pixel (x, y: number) -> R, G, B, A: number

Arguments

x
Pixel position

y
Pixel position

Return values

R
Color red component

G
Color green component

B
Color blue component

A
Color alpha component

Description

Returns the pixel color.

	canvas:measureText (text: string) -> dx, dy: number

Arguments

x
Text coordinate

y
Text coordinate

text
Text to be measured

Return values

dx
text width

dy
text height

Description

Returns the border coordinates for the given text, as if it were drawn at (x,y) with the configured font of canvas:attrFont().

7.2 The event module

This module offers an API for event handling. Using the API, a Lua application may communicate with many middleware components asynchronously.

An application may also use this mechanism internally, using the “user” event class.

The typical use of Lua application is to handle events: Middleware-generated events or events coming from user interactions (for example, through the remote control).

During its initiation, before becoming event oriented, a Lua script has to register an event handler function. After the initialization any action performed by the script will be in response to an event notified to the application, that is, to the event handler function.

=== example.lua ===

... -- initializing code

function handler (evt)

 ... -- handler code

end

event.register(handler) -- register as an event listener

=== end ===

As aforementioned, a Lua script is also capable of generating events, called “spontaneous”, trough a call to the event.post(evt) function.

7.2.1 Functions

	event.post ([dst: string]; evt: event) -> sent: boolean; err_msg: string

Arguments

dst
Event destination

evt
Event to be posted

Return values

sent
If the event was successfully sent

err_msg
Error message in case of errors

Description

Posts the given event.

The parameter "dst" is the event destination and may assume the values "in" (send to itself) and "out" (send to another middleware component). The default value is ‘out’.

	event.timer (time: number, f: function) -> cancel: function
Arguments

time
Time in milliseconds

f
Callback function

Return value

unreg
Function to cancel the timer

Description

Creates a timer that expires after a timeout (in milliseconds) and then call the callback function f.

The signature of f is simple, no parameters are received or returned:

function f () end

Once created, it’s not possible to cancel the timer.

The value of 0 milliseconds is valid. In this case, event.timer() shall return immediately and f shall be called as soon as possible.

	event.register ([pos: number]; f: function; [class: string]; […: any])

Arguments

pos

Register position (optional)

f

Callback function

class
Class filter (optional)

…

Class dependent filter (optional)

Description

Registers the given function as an event listener, that is, whenever an event happens, f is called (the function f is an event handler).

The parameter pos is optional. It indicates the position where f is registered. If it is not given, the function is registered in the last position.

The parameter class is optional and indicates which class of events the function shall receive. If class is specified, other class dependent filters may be defined. A nil value in any position indicates that the parameter shall not be filtered.

The signature for f is:

function f (evt) end -> handled: boolean

Where evt is the event that triggers the function.

The function may return “true”, to signalize that the event was handled and, therefore, should not be sent to other handlers.

It is recommended that the function, defined by the application, returns fast, since while it is running no other event may be processed..

	event.unregister (f: function)

Arguments

f
Callback function

Description

Unregisters the given function as a listener, that is, new events will no longer be notified to f.

	event.uptime () -> ms: number

Return values

ms
Time in milliseconds

Description

Returns the number of milliseconds elapsed since the beginning of the application.

7.2.2 Event classes

The function event.post() and the registered handler in event.register() receive events as parameters.

An event is described as a common Lua table, where the class field is mandatory and identifies the event class.

The following event classes are defined:

	key class:

evt = { class='key', type: string, key: string}

* type may be 'press' or 'release'.

* key is the key value; the "event.keys" table holds all keycodes available.

Example

evt = { class='key', type='press', key=’0’}

NOTE ‑ In the key class, the class dependent filter could be type and key, in this order.

	tcp class:

In order to send or receive a tcp data, a connection shall be firstly established trough posting an event in the form:

evt = { class='tcp', type='connect', host=addr, port=number,

[timeout=number] }

The connection result is returned in a pre-registered event handler for the class. The returned event is in the form:

evt = { class='tcp', type='connect', host=addr, port=number,

connection=identifier, error=<err_msg>}

The error and connection fields are mutually exclusive. When there is a communication error, a message is returned in the error field. When the communication is succeeded, the connection identifier is returned in the connection field.
A Lua application sends data, using tcp protocol, through posting events in the form:

evt = { class=’tcp’, type='data', ,connection=identifier,

value=string, [timeout=number] }

Similarly, a Lua application receives data transported by tcp protocol using events in the form:

evt = { class=’tcp’, type=’data’, connection=identifier,

value=string, error=msg}

The error and value fields are mutually exclusive. When there is a communication error, a message is returned in the error field. When the communication is succeeded, the message is passed in the value field.

In order to close the connection, the following event shall be posted:

evt = { class='tcp', type='disconnect', connection=identifier }

NOTE 1 ‑ A specific middleware implementation should handle issues like authentication, connection timeout/retry, whether a connection should keep open, etc.

NOTE 2 ‑ In the tcp class, the class dependent filter could only be connection.

	http class:

A Lua application sends data, using http protocol, through posting events in the form:

evt = { class=‘http’, host=addr, port=number,

value=string, [timeout=number] }

Similarly, a Lua application receives data transported by http protocol using events in the form:

evt = { class=‘http’, host=addr, port=number, value=string, error=msg}

The error and value fields are mutually exclusive. When there is a communication error, a message is returned in the error field. When the communication is succeeded, the message is passed in the value field.

NOTE 1 ‑ A specific middleware implementation should handle issues like authentication, connection timeout/retry, whether a connection should keep open, etc.

NOTE 2 ‑ In the http class, the class dependent filter could only be host, port.

	rtp class:

A Lua application sends data, using rtp protocol, through posting events in the form:

evt = { class=‘rtp’, host=addr, port=number, value=string, timeout=number }

Similarly, a Lua application receives data transported by rtp protocol using events in the form:

evt = { class=‘rtp’, host=addr, port=number, value=string, error=msg}

The error and value fields are mutually exclusive. When there is a communication error, a message is returned in the error field. When the communication is succeeded, the message is passed in the value field.

NOTE 1 ‑ A specific middleware implementation should handle issues like authentication, connection timeout/retry, whether a connection should keep open, etc.

NOTE 2 ‑ In the rtp class, the class dependent filter could only be host, port.

	sms class:

The behaviour for sending and receiveing data using SMS is very similar to the one of the tcp class. The sms class is optional.

A Lua application sends data, using SMS, through posting events in the form:

evt = { class=‘sms’, to=’phone number’, value=string }

Similarly, an Lua application receives data transported by SMS using events in the form:

evt = { class=‘sms’, from=’phone number’, value=string }

NOTE 1 ‑ A specific middleware implementation should handle issues like authentication, etc.

NOTE 2 ‑ In the sms class, the class dependent filter could only be from.

	si class:

The si event class provides access to a set of information multiplexed in a transport stream and periodically transmitted.

The information acquisition process shall be performed in two steps:

1) A request is made calling the asynchronous event.post() function;

2) An event, to be delivered to the registered-event handlers of a Lua script, whose data field contains a set of subfields and is represented by a Lua table. The set of subfields depends on requested information.

NOTE ‑ In the si class, the class dependent filter could only be type.

Three event types are defined by the following tables:

type = ‘services’

The table of ‘services’ event type is made up by a set of vectors, each one with information related with a multiplexed service of the tuned transport stream.

Each request for a table of ‘services’ event type shall be carried out through the following call:

event.post('out', { class='si', type='services'[, index=N][, fields={field_1, field_2,…, field_j}]}),

where:

i) the index field defines the service index, when specified; if not specified, all services of the tuned transport stream shall be present in the returned event;

ii) the fields list may have as a value any subset of subfields defined for the data table of the returned event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields list is not specified, all subfields of the data table shall be filled.

The returned event is created after all request information is processed by the middleware (information that is not broadcasted within a maximum interval shall be returned as ‘nil’).

NOTE ‑ In order to compute the values of the data-table subfields to be returned in events of services type, SI tables should be used as a basis, as well as descriptors associated with the service [i].

Some information from SI may be specific for a country, service provider or system used. Therefore, data-able subfields are left to be defined for each case.

type = ‘epg’

The table of the ‘epg’ event type is made up by a set of vectors. Each vector contains information about an event of the content being transmitted.

Each request for a table of ‘epg’ event type shall be carried out through one of the following possible calls:

1) event.post('out', { class='si', type='epg', stage=’current’[, fields={field_1, field_2,…, field_j}]})

where the fields list may have as a value any subset of subfields defined for the data table of the returned event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields list is not specified, all subfields of the data table shall be filled.

Description: returns information regarding to the current event of the content being transmitted.

2) event.post('out', {class='si', type='epg', stage='next'[, eventId=<number>][, fields={field_1, field_2,…, field_j}]})

where:

i) the eventid field, when specified, identifies the event immediately before the event whose information is required. When not specified, the requested information is for the event that immediately follows the curresnt event.

ii) the fields list may have as a value any subset of subfields defined for the data table of the returned event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields list is not specified, all subfields of the data table shall be filled.

Description: returns information regarding to the event immediately after the event defined in eventId, or information regarding to the event immediately after the current event, when eventId is not specified.

3) event.post('out', {class='si', type='epg', stage=’schedule’, startTime=<date>, endTime=<date>[, fields={field_1, field_2,…, field_j}]})

where the fields list may have as a value any subset of subfields defined for the data table of the returned event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields list is not specified, all subfields of the data table shall be filled.

Description: returns information regarding to events within the time interval defined by the startTime and endTime fields, which have tables in the <date> format as values.

The returned event is created after all request information is processed by the middleware (information that is not broadcasted within a maximum interval shall be returned as ‘nil’).

NOTE ‑ In order to compute the values of the data-table subfields to be returned in events of epg type, SI tables should be used as a basis, as well as descriptors associated with the event [i].

Some information from SI may be specific for a country, service provider or system used. Therefore, data-table subfields are left to be defined for each case.

type=’time’

The table of the ‘time’ event type contains information about the current UTC (Universal Time Coordinated) date and time, but in the official country time zone in which the receptor is located.

Each request for a table of ‘time’ event type shall be carried out through the following call:

event.post('out', { class='si', type=’time’})

The returned event is created after all request information is processed by the middleware (information that is not broadcasted within a maximum interval shall be returned as ‘nil’). The data table is returned as follows:

evt = {

 class = 'si',

 type = 'time',

 data = {

 year = <number>,

 month = <number>,

 day = <number>,

 hours = <number>,

 minutes = <number>,

 seconds = <number>

 }

NOTE ‑ In order to compute the values of the data-table subfields to be returned in events of time type, the appropriate SI table should be used as a basis.

The SI table used is left to be defined for each case, since some information from SI may be specific for a country, service provider or system used.

	metadata class:

The metadata event class provides access to information about content, users, systems, providers, etc, as defined in the high-level specification of metadata for IPTV services [ITU-T H.750].
The information acquisition process shall be performed in two steps:

1) A request is made calling the asynchronous event.post() function;

2) An event, to be delivered to the registered-event handlers of a Lua script, whose data field contains a set of subfields and is represented by a Lua table. The set of subfields depends on requested information.
In the metadata class, no fields are defined (with the exception of the class field), they are left to be specified by vendors, operators and providers, for example.

NOTE ‑ In the metadata class, the class dependent filter could be type, if this field is defined.

	user class:

By using the class user, applications may extend their functionalities, create their own events.

In this class, no fields are defined (with the exception of the class field).

NOTE ‑ In the user class, the class dependent filter could be type, if this field is defined.

7.3 The persistent module

Lua applications may save data in a restricted middleware area and recover it between executions. Lua player shall allow an application to persist a value to be used by itself or by another imperative object. In order to do that it defines a reserved area, inaccessible to non-imperative objects. This area is split into the groups “service”, “channel” and “shared. There are no predefined or reserved variables in these groups, and imperative objects are allowed to change variable’s values directly. Other imperative languages should offer an API to access this same area.

In this module, Lua offers an API to export the persistent table with the variables defined in the reserved area.

The use of the persistent table is very similar to the settings table, except that, in this case, imperative codes may change field values.

Examples of use:

persistent.service.total = 10

color = persistent.shared.color

Annex I Lua Specification
The content of this annex was extracted from Lua 5.1 Reference Manual, by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes, Lua.org, August 2006 (ISBN 85-903798-3-3), and it is reprinted here with approval of the authors.
I.1 The language

I.1.1 Used Notation

The language constructs are explained using the usual extended BNF notation, in which {a} means 0 or more a's, and [a] means an optional a. Keywords are shown in bold, non-terminals are shown in the standard document font, and other terminal symbols are also shown in the standard document font, but enclosed in single quotes. The complete syntax of Lua can be found at the end of this manual.

I.1.2 Lexical conventions

Names (also called identifiers) in Lua may be any string of letters, digits, and underscores, not beginning with a digit. This coincides with the definition of names in most languages. (The definition of letter depends on the current locale: any character considered alphabetic by the current locale may be used in an identifier.) Identifiers are used to name variables and table fields.

The following keywords are reserved and shall not be used as names:

and
break
do
else
elseif

end
false
for
function
if

in
local
nil
not
or

repeat
return
then
true
until
while

Lua is a case-sensitive language: and is a reserved word, but And and AND are two different, valid names. As a convention, names starting with an underscore followed by uppercase letters (such as _VERSION) are reserved for internal global variables used by Lua.

The following strings denote other tokens:

 + - * / % ^ #

 == ~= <= >= < > =

 () { } []

 ; : ,

Literal strings may be delimited by matching single or double quotes, and may contain the following C-like escape sequences:

· \a --- bell

· \b --- backspace

· \f --- form feed

· \n --- newline

· \r --- carriage return

· \t --- horizontal tab

· \v --- vertical tab

· \\ --- backslash

· \" --- quotation mark (double quote)

· \' --- apostrophe (single quote)

Moreover, a `\newline´ (that is, a backslash followed by a real newline) results in a newline in the string. A character in a string may also be specified by its numerical value using the escape sequence `\ddd´, where ddd is a sequence of up to three decimal digits. (Note that if a numerical escape is to be followed by a digit, it must be expressed using exactly three digits.) Strings in Lua may contain any 8-bit value, including embedded zeros, which may be specified as `\0´.

To put a double (single) quote, a newline, a backslash, or an embedded zero inside a literal string enclosed by double (single) quotes you must use an escape sequence. Any other character may be directly inserted into the literal. (Some control characters can cause problems for the file system, but Lua has no problem with them.)

Literal strings may also be defined using a long format enclosed by long brackets. We define an opening long bracket of level n as an opening square bracket followed by n equal signs followed by another opening square bracket. So, an opening long bracket of level 0 is written as [[, an opening long bracket of level 1 is written as [=[, and so on. A closing long bracket is defined similarly; for instance, a closing long bracket of level 4 is written as]====]. A long string starts with an opening long bracket of any level and ends at the first closing long bracket of the same level. Literals in this bracketed form can run for several lines, do not interpret any escape sequences, and ignore long brackets of any other level. They may contain anything except a closing bracket of the proper level or embedded zeros.

For convenience, when the opening long bracket is immediately followed by a newline, the newline is not included in the string. As an example, in a system using ASCII (in which `a´ is coded as 97, newline is coded as 10, and `1´ is coded as 49), the four literals below denote the same string:

 (1)
'alo\n123"'

 (2)
"alo\n123\""

 (3)
'\97lo\10\04923"'

 (4)
[[alo

123"]]

 (5)
[==[

alo

123"]==]

Numerical constants may be written with an optional decimal part and an optional decimal exponent. Examples of valid numerical constants are

 3 3.0 3.1416 314.16e-2 0.31416E1

Comments start with a double hyphen (--) anywhere outside a string. If the text immediately after -- is not an opening long bracket, the comment is a short comment, which runs until the end of the line. Otherwise, it is a long comment, which runs until the corresponding closing long bracket. Long comments are frequently used to disable code temporarily.

I.1.3 Values and types

I.1.3.1 Basic Types

Lua is a dynamically typed language. That means that variables do not have types; only values do. There are no type definitions in the language. All values carry their own type.

All values in Lua are first-class values. That means that all values may be stored in variables, passed as arguments to other functions, and returned as results.

There are eight basic types in Lua: nil, boolean, number, string, function, userdata, thread, and table. Nil is the type of the value nil, whose main property is to be different from any other value; it usually represents the absence of a useful value. Boolean is the type of the values false and true. Both nil and false make a condition false; any other value makes it true. Number represents real (double-precision floating-point) numbers. (It is easy to build Lua interpreters that use other internal representations for numbers, such as single-precision float or long integers. See file luaconf.h.) String represents arrays of characters. Lua is 8-bit clean: Strings may contain any 8-bit character, including embedded zeros (`\0´) (see 6.2).

Lua may call (and manipulate) functions written in Lua and functions written in C (see 6.6.9).

The type userdata is provided to allow arbitrary C data to be stored in Lua variables. This type corresponds to a block of raw memory and has no pre-defined operations in Lua, except assignment and identity test. However, by using metatables, the programmer may define operations for userdata values (see 6.9). Userdata values shall not be created or modified in Lua, only through he C API. This guarantees the integrity of data owned by the host program.

The type thread represents independent threads of execution and it is used to implement coroutines (see 6.12). Do not confuse Lua threads with operating-system threads. Lua supports coroutines on all systems, even those that do not support threads.

The type table implements associative arrays, that is, arrays that may be indexed not only with numbers, but with any value (except nil). Tables may be heterogeneous; that is, they may contain values of all types (except nil). Tables are the sole data structuring mechanism in Lua; they may be used to represent ordinary arrays, symbol tables, sets, records, graphs, trees, etc. To represent records, Lua uses the field name as an index. The language supports this representation by providing a.name as syntactic sugar for a["name"]. There are several convenient ways to create tables in Lua (see 6.6.8).

Like indices, the value of a table field may be of any type (except nil). In particular, because functions are first-class values, table fields may contain functions. Thus tables may also carry methods (see 6.6.10).

Strings, tables, functions, and userdata values are objects: variables do not actually contain these values, only references to them. Assignment, parameter passing, and function returns always manipulate references to such values; these operations do not imply any kind of copy.

The library function type returns a string describing the type of a given value.

I.1.3.2 Coercion

Lua provides automatic conversion between string and number values at run time. Any arithmetic operation applied to a string tries to convert that string to a number, following the usual conversion rules. Conversely, whenever a number is used where a string is expected, the number is converted to a string, in a reasonable format. For complete control over how numbers are converted to strings, use the format function from the string library (see string.format).

I.1.4 Variables

Variables are places that store values. There are three kinds of variables in Lua: global variables, local variables, and table fields.

A single name may denote a global variable or a local variable (or a function formal parameter, which is a particular kind of local variable):

var ::= Name

Name denotes identifiers, as defined in (see 6.2).

Variables are assumed to be global unless explicitly declared local (see 6.5.8). Local variables are lexically scoped: Local variables can be freely accessed by functions defined inside their scope (see 6.7).

Before the first assignment to a variable, its value is nil.

Square brackets are used to index a table:

var ::= prefixexp `[´ exp `]´

The first expression (prefixexp) should result in a table value; the second expression (exp) identifies a specific entry in that table. The expression denoting the table to be indexed has a restricted syntax (see 6.6.1).

The syntax var.Name is just syntactic sugar for var["Name"] and is used to denote table fields:

var ::= prefixexp `.´ Name

The meaning of accesses to global variables and table fields may be changed via metatables. An access to an indexed variable t[i] is equivalent to a call gettable_event(t,i). (see 6.9 for a complete description of the gettable_event function. This function is not defined or callable in Lua. We use it here only for explanatory purposes.)

All global variables live as fields in ordinary Lua tables, called environment tables or simply environments (see 6.10). Each function has its own reference to an environment, so that all global variables in that function will refer to that environment table. When a function is created, it inherits the environment from the function that created it. To get the environment table of a Lua function, you call getfenv. To replace it, you call setfenv. (You may only manipulate the environment of C functions through the debug library; (see 9.10).)

An access to a global variable x is equivalent to _env.x, which in turn is equivalent to

 gettable_event(_env, "x")

where _env is the environment of the running function (see 6.9 for a complete description of the gettable_event function. This function is not defined or callable in Lua. Similarly, the _env variable is not defined in Lua. We use them here only for explanatory purposes.)

I.1.5 Statements

I.1.5.1 Basic Concepts

Lua supports an almost conventional set of statements, similar to those in Pascal or C. This set includes assignment, control structures, function calls, table constructors, and variable declarations.

I.1.5.2 Chunks

The unit of execution of Lua is called a chunk. A chunk is simply a sequence of statements, which are executed sequentially. Each statement may be optionally followed by a semicolon:

chunk ::= {stat [`;´]}

There are no empty statements and thus `;;´ is not legal.

Lua handles a chunk as the body of an anonymous function with a variable number of arguments (see 6.6.10). As such, chunks may define local variables, receive arguments, and return values.

A chunk may be stored in a file or in a string inside the host program. When a chunk is executed, first it is pre-compiled into instructions for a virtual machine, and then the compiled code is executed by an interpreter for the virtual machine.

Chunks may also be pre-compiled into binary form; see program luac for details. Programs in source and compiled forms are interchangeable; Lua automatically detects the file type and acts accordingly.

I.1.5.3 Blocks

A block is a list of statements; syntactically, a block is the same as a chunk:

block ::= chunk

A block may be explicitly delimited to produce a single statement:

stat ::= do block end

Explicit blocks are useful to control the scope of variable declarations. Explicit blocks are also sometimes used to add a return or break statement in the middle of another block (see 6.5.5).

I.1.5.4 Assignment

Lua allows multiple assignment. Therefore, the syntax for assignment defines a list of variables on the left side and a list of expressions on the right side. The elements in both lists are separated by commas:

stat ::= varlist1 `=´ explist1

varlist1 ::= var {`,´ var}

explist1 ::= exp {`,´ exp}

Expressions are discussed in 6.6.

Before the assignment, the list of values is adjusted to the length of the list of variables. If there are more values than needed, the excess values are thrown away. If there are fewer values than needed, the list is extended with as many nil's as needed. If the list of expressions ends with a function call, then all values returned by that call enter in the list of values, before the adjustment (except when the call is enclosed in parentheses; see 6.6).

The assignment statement first evaluates all its expressions and only then are the assignments performed. Thus the code

 i = 3

 i, a[i] = i+1, 20
sets a[3] to 20, without affecting a[4] because the i in a[i] is evaluated (to 3) before it is assigned 4. Similarly, the line

 x, y = y, x

exchanges the values of x and y.

The meaning of assignments to global variables and table fields may be changed via metatables. An assignment to an indexed variable t[i] = val is equivalent to settable_event(t,i,val) (see 6.9 for a complete description of the settable_event function. This function is not defined or callable in Lua. We use it here only for explanatory purposes.)

An assignment to a global variable x = val is equivalent to the assignment _env.x = val, which in turn is equivalent to

 settable_event(_env, "x", val)

where _env is the environment of the running function. (The _env variable is not defined in Lua. We use it here only for explanatory purposes.)

I.1.5.5 Control structures

The control structures if, while, and repeat have the usual meaning and familiar syntax:

stat ::= while exp do block end

stat ::= repeat block until exp

stat ::= if exp then block {elseif exp then block} [else block] end

Lua also has a for statement, in two flavors (see 6.5.6).

The condition expression of a control structure may return any value. Both false and nil are considered false. All values different from nil and false are considered true (in particular, the number 0 and the empty string are also true).

In the repeat--until loop, the inner block does not end at the until keyword, but only after the condition. So, the condition may refer to local variables declared inside the loop block.

The return statement is used to return values from a function or a chunk (which is just a function). Functions and chunks may return more than one value, so the syntax for the return statement is

stat ::= return [explist1]

The break statement is used to terminate the execution of a while, repeat, or for loop, skipping to the next statement after the loop:

stat ::= break

A break ends the innermost enclosing loop.

The return and break statements may only be written as the last statement of a block. If it is really necessary to return or break in the middle of a block, then an explicit inner block may be used, as in the idioms `do return end´ and `do break end´, because now return and break are the last statements in their (inner) blocks.

I.1.5.6 For statement

The for statement has two forms: one numeric and one generic.

The numeric for loop repeats a block of code while a control variable runs through an arithmetic progression. It has the following syntax:

stat ::= for Name `=´ exp `,´ exp [`,´ exp] do block end

The block is repeated for name starting at the value of the first exp, until it passes the second exp by steps of the third exp. More precisely, a for statement like

 for var = e1, e2, e3 do block end

is equivalent to the code:

 do

 local _var, _limit, _step = tonumber(e1), tonumber(e2),

 tonumber(e3)

 if not (_var and _limit and _step) then error() end

 while (_step>0 and _var<=_limit)

 or (_step<=0 and _var>=_limit) do

 local var = _var

 block

 _var = _var + _step

 end

 end

 Note the following:

· All three control expressions are evaluated only once, before the loop starts. They must all result in numbers.

· var, _limit, and _step are invisible variables. The names are here for explanatory purposes only.

· If the third expression (the step) is absent, then a step of 1 is used.

· You may use break to exit a for loop.

· The loop variable var is local to the loop; you shall not use its value after the for ends or is broken. If you need the value of the loop variable var, then assign it to another variable before breaking or exiting the loop.

The generic for statement works over functions, called iterators. On each iteration, the iterator function is called to produce a new value, stopping when this new value is nil. The generic for loop has the following syntax:

stat ::= for namelist in explist1 do block end

namelist ::= Name {`,´ Name}

A for statement like

 for var_1, ..., var_n in explist do block end

is equivalent to the code:

 do

 local _f, _s, _var = explist

 while true do

 local var_1, ... , var_n = _f(_s, _var)

 _var = var_1

 if _var == nil then break end

 block

 end

 end

Note the following:

· explist is evaluated only once. Its results are an iterator function, a state, and an initial value for the first iterator variable.

· _f, _s, and _var are invisible variables. The names are here for explanatory purposes only.

· You may use break to exit a for loop.

· The loop variables var_i are local to the loop; you shall not use their values after the for ends. If you need these values, then assign them to other variables before breaking or exiting the loop.

I.1.5.7 Function calls as statements

To allow possible side-effects, function calls may be executed as statements:

stat ::= functioncall

In this case, all returned values are thrown away. Function calls are explained in 6.6.9.

6.5.8
Local declarations

Local variables may be declared anywhere inside a block. The declaration may include an initial assignment:

stat ::= local namelist [`=´ explist1]

If present, an initial assignment has the same semantics of a multiple assignment (see 6.5.4). Otherwise, all variables are initialized with nil.

A chunk is also a block (see 6.5.2), and so local variables may be declared in a chunk outside any explicit block. The scope of such local variables extends until the end of the chunk.

The visibility rules for local variables are explained in 6.7.

I.1.6 Expressions

I.1.6.1 Basic Expressions

The basic expressions in Lua are the following:

exp ::= prefixexp

exp ::= nil | false | true

exp ::= Number

exp ::= String

exp ::= function

exp ::= tableconstructor

exp ::= `...´

exp ::= exp binop exp

exp ::= unop exp

prefixexp ::= var | functioncall | `(´ exp `)´

Numbers and literal strings are explained in 6.2; variables are explained in 6.4; function definitions are explained in 6.6.10; function calls are explained in 6.6.9; table constructors are explained in 6.6.8. Vararg expressions, denoted by three dots (`...´), may only be used inside vararg functions; they are explained in 6.6.10.

Binary operators comprise arithmetic operators (see 6.6.2), relational operators (see 6.6.3), and logical operators (see 6.6.4). Unary operators comprise the unary minus (see 6.6.2), the unary not (see 6.6.4), and the unary length operator (see 6.6.6).

Both function calls and vararg expressions may result in multiple values. If the expression is used as a statement (see 6.5.7) (only possible for function calls), then its return list is adjusted to zero elements, thus discarding all returned values. If the expression is used inside another expression or in the middle of a list of expressions, then its result list is adjusted to one element, thus discarding all values except the first one. If the expression is used as the last element of a list of expressions, then no adjustment is made, unless the call is enclosed in parentheses.

Here are some examples:

 f()

-- adjusted to 0 results

 g(f(), x)

-- f() is adjusted to 1 result

 g(x, f())

-- g gets x plus all values returned by f()

 a,b,c = f(), x
-- f() is adjusted to 1 result (c gets nil)

 a,b = ...

-- a gets the first vararg parameter, b gets

-- the second (both a and b may get nil if

-- there is no corresponding vararg parameter)

 a,b,c = x, f()
-- f() is adjusted to 2 results

 a,b,c = f()

-- f() is adjusted to 3 results

 return f()

-- returns all values returned by f()

 return ...

-- returns all received vararg parameters

 return x,y,f()
-- returns x, y, and all values returned by f()

 {f()}

-- creates a list with all values returned by f()

 {...}

-- creates a list with all vararg parameters

 {f(), nil}

-- f() is adjusted to 1 result

An expression enclosed in parentheses always results in only one value. Thus, (f(x,y,z)) is always a single value, even if f returns several values. (The value of (f(x,y,z)) is the first value returned by f or nil if f does not return any values.)

I.1.6.2 Arithmetic operators

Lua supports the usual arithmetic operators: the binary + (addition), - (subtraction), * (multiplication), / (division), % (modulo), and ^ (exponentiation); and unary - (negation). If the operands are numbers, or strings that may be converted to numbers (see 6.3.2), then all operations have the usual meaning. Exponentiation works for any exponent. For instance, x^(-0.5) computes the inverse of the square root of x. Modulus is defined as

 a % b == a - math.floor(a/b)*b

That is, it is the remainder of a division that rounds the quotient towards minus infinity.

I.1.6.3 Relational operators

The relational operators in Lua are

 == ~= < > <= >=

These operators always result in false or true.

Equality (==) first compares the type of its operands. If the types are different, then the result is false. Otherwise, the values of the operands are compared. Numbers and strings are compared in the usual way. Objects (tables, userdata, threads, and functions) are compared by reference: Two objects are considered equal only if they are the same object. Every time you create a new object (a table, userdata, thread, or function), this new object is different from any previously existing object.

You may change the way that Lua compares tables and userdata by using the "eq" metamethod (see 6.9).

The conversion rules of 6.3.2 do not apply to equality comparisons. Thus, "0"==0 evaluates to false, and t[0] and t["0"] denote different entries in a table.

The operator ~= is exactly the negation of equality (==).

The order operators work as follows. If both arguments are numbers, then they are compared as such. Otherwise, if both arguments are strings, then their values are compared according to the current locale. Otherwise, Lua tries to call the "lt" or the "le" metamethod (see 6.9).

I.1.6.4 Logical operators

The logical operators in Lua are

 and or not

Like the control structures (see 6.5.5), all logical operators consider both false and nil as false and anything else as true.

The negation operator not always returns false or true. The conjunction operator and returns its first argument if this value is false or nil; otherwise, and returns its second argument. The disjunction operator or returns its first argument if this value is different from nil and false; otherwise, or returns its second argument. Both and and or use short-cut evaluation; that is, the second operand is evaluated only if necessary. Here are some examples:

 10 or 20

--> 10

 10 or error()

--> 10

 nil or "a"

--> "a"

 nil and 10

--> nil

 false and error()
 --> false

 false and nil

--> false

 false or nil

--> nil

 10 and 20

--> 20

(Here and in the sequel, `-->´ indicates the result of the preceding expression.)

I.1.6.5 Concatenation

The string concatenation operator in Lua is denoted by two dots (`..´). If both operands are strings or numbers, then they are converted to strings according to the rules mentioned in 6.3.2. Otherwise, the "concat" metamethod is called (see 6.9).

I.1.6.6 The length operator

The length operator is denoted by the unary operator #. The length of a string is its number of bytes (that is, the usual meaning of string length when each character is one byte).

The length of a table t is defined to be any integer index n such that t[n] is not nil and t[n+1] is nil; moreover, if t[1] is nil, n may be zero. For a regular array, with non-nil values from 1 to a given n, its length is exactly that n, the index of its last value. If the array has "holes" (that is, nil values between other non-nil values), then #t may be any of the indices that directly precedes a nil value (that is, it may consider any such nil value as the end of the array).

I.1.6.7 Precedence

Operator precedence in Lua follows the table below, from lower to higher priority:

 or

 and

 < > <= >= ~= ==

 ..

 + -

 * / %

 not # - (unary)

 ^

As usual, you may use parentheses to change the precedences of an expression. The concatenation (`..´) and exponentiation (`^´) operators are right associative. All other binary operators are left associative.

I.1.6.8 Table constructors

Table constructors are expressions that create tables. Every time a constructor is evaluated, a new table is created. Constructors may be used to create empty tables, or to create a table and initialize some of its fields. The general syntax for constructors is

tableconstructor ::= `{´ [fieldlist] `}´

fieldlist ::= field {fieldsep field} [fieldsep]

field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp

fieldsep ::= `,´ | `;´

Each field of the form [exp1] = exp2 adds to the new table an entry with key exp1 and value exp2. A field of the form name = exp is equivalent to ["name"] = exp. Finally, fields of the form exp are equivalent to [i] = exp, where i are consecutive numerical integers, starting with 1. Fields in the other formats do not affect this counting. For example,

 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }

is equivalent to

 do

 local t = {}

 t[f(1)] = g

 t[1] = "x" -- 1st exp

 t[2] = "y" -- 2nd exp

 t.x = 1 -- t["x"] = 1

 t[3] = f(x) -- 3rd exp

 t[30] = 23

 t[4] = 45 -- 4th exp

 a = t

 end

If the last field in the list has the form exp and the expression is a function call or a vararg expression, then all values returned by that expression enter the list consecutively (see 6.6.9). To avoid this, enclose the function call (or the vararg expression) in parentheses (see 6.6).

The field list may have an optional trailing separator, as a convenience for machine-generated code.

I.1.6.9 Function calls

A function call in Lua has the following syntax:

functioncall ::= prefixexp args

In a function call, first prefixexp and args are evaluated. If the value of prefixexp has type function, then that function is called with the given arguments. Otherwise, the prefixexp "call" metamethod is called, having as first parameter the value of prefixexp, followed by the original call arguments (see 6.9).

The form

functioncall ::= prefixexp `:´ Name args

may be used to call "methods". A call v:name(...) is syntactic sugar for v.name(v,...), except that v is evaluated only once.

Arguments have the following syntax:

args ::= `(´ [explist1] `)´

args ::= tableconstructor

args ::= String

All argument expressions are evaluated before the call. A call of the form f{...} is syntactic sugar for f({...}); that is, the argument list is a single new table. A call of the form f'...' (or f"..." or f[[...]]) is syntactic sugar for f('...'); that is, the argument list is a single literal string.

As an exception to the free-format syntax of Lua, you shall not put a line break before the `(´ in a function call. That restriction avoids some ambiguities in the language. If you write

 a = f

 (g).x(a)

Lua would see that as a single statement, a = f(g).x(a). So, if you want two statements, you must add a semi-colon between them. If you actually want to call f, you must remove the line break before (g).

A call of the form return functioncall is called a tail call. Lua implements proper tail calls (or proper tail recursion): In a tail call, the called function reuses the stack entry of the calling function. Therefore, there is no limit on the number of nested tail calls that a program may execute. However, a tail call erases any debug information about the calling function. Note that a tail call only happens with a particular syntax, where the return has one single function call as argument; this syntax makes the calling function return exactly the returns of the called function. So, none of the following examples are tail calls:

 return (f(x)) -- results adjusted to 1

 return 2 * f(x)

 return x, f(x) -- additional results

 f(x); return -- results discarded

 return x or f(x) -- results adjusted to 1

I.1.6.10 Function definitions

The syntax for function definition is

function ::= function funcbody

funcbody ::= `(´ [parlist1] `)´ block end

The following syntactic sugar simplifies function definitions:

stat ::= function funcname funcbody

stat ::= local function Name funcbody

funcname ::= Name {`.´ Name} [`:´ Name]

The statement

 function f () ... end

translates to

 f = function () ... end

The statement

 function t.a.b.c.f () ... end

translates to

 t.a.b.c.f = function () ... end

The statement

 local function f () ... end

translates to

 local f; f = function () ... end

not this:

 local f = function () ... end

(This only makes a difference when the body of the function contains references to f.)

A function definition is an executable expression, whose value has type function. When Lua pre-compiles a chunk, all its function bodies are pre-compiled too. Then, whenever Lua executes the function definition, the function is instantiated (or closed). This function instance (or closure) is the final value of the expression. Different instances of the same function may refer to different external local variables and may have different environment tables.

Parameters act as local variables that are initialized with the argument values:

parlist1 ::= namelist [`,´ `...´] | `...´

When a function is called, the list of arguments is adjusted to the length of the list of parameters, unless the function is a variadic or vararg function, which is indicated by three dots (`...´) at the end of its parameter list. A vararg function does not adjust its argument list; instead, it collects all extra arguments and supplies them to the function through a vararg expression, which is also written as three dots. The value of this expression is a list of all actual extra arguments, similar to a function with multiple results. If a vararg expression is used inside another expression or in the middle of a list of expressions, then its return list is adjusted to one element. If the expression is used as the last element of a list of expressions, then no adjustment is made (unless the call is enclosed in parentheses).

As an example, consider the following definitions:

 function f(a, b) end

 function g(a, b, ...) end

 function r() return 1,2,3 end

Then, we have the following mapping from arguments to parameters and to the vararg expression:

 CALL

PARAMETERS

 f(3

a=3, b=nil

 f(3, 4)

a=3, b=4

 f(3, 4, 5)

a=3, b=4

 f(r(), 10)

a=1, b=10

 f(r())

a=1, b=2

 g(3)

a=3, b=nil, ... --> (nothing)

 g(3, 4)

a=3, b=4, ... --> (nothing)

 g(3, 4, 5, 8)
a=3, b=4, ... --> 5 8

 g(5, r())

a=5, b=1, ... --> 2 3

Results are returned using the return statement (see 6.5.5). If control reaches the end of a function without encountering a return statement, then the function returns with no results.

The colon syntax is used for defining methods, that is, functions that have an implicit extra parameter self. Thus, the statement

 function t.a.b.c:f (...) ... end

is syntactic sugar for

 t.a.b.c.f = function (self, ...) ... end

I.1.7 Visibility rules

Lua is a lexically scoped language. The scope of variables begins at the first statement after their declaration and lasts until the end of the innermost block that includes the declaration. Consider the following example:

 x = 10 -- global variable

 do -- new block

 local x = x -- new `x', with value 10

 print(x) --> 10

 x = x+1

 do -- another block

 local x = x+1 -- another `x'

 print(x) --> 12

 end

 print(x) --> 11

 end

 print(x) --> 10 (the global one)

Notice that, in a declaration like local x = x, the new x being declared is not in scope yet, and so the second x refers to the outside variable.

Because of the lexical scoping rules, local variables may be freely accessed by functions defined inside their scope. A local variable used by an inner function is called an upvalue, or external local variable, inside the inner function.

Notice that each execution of a local statement defines new local variables. Consider the following example:

 a = {}

 local x = 20

 for i=1,10 do

 local y = 0

 a[i] = function () y=y+1; return x+y end

 end

The loop creates ten closures (that is, ten instances of the anonymous function). Each of these closures uses a different y variable, while all of them share the same x.

I.1.8 Error handling

Because Lua is an embedded extension language, all Lua actions start from C code in the host program calling a function from the Lua library (see lua_pcall). Whenever an error occurs during Lua compilation or execution, control returns to C, which may take appropriate measures (such as printing an error message).

Lua code may explicitly generate an error by calling the error function. If you need to catch errors in Lua, you may use the pcall function.

I.1.9 Metatables

Every value in Lua may have a metatable. This metatable is an ordinary Lua table that defines the behavior of the original value under certain special operations. You may change several aspects of the behavior of operations over a value by setting specific fields in its metatable. For instance, when a non-numeric value is the operand of an addition, Lua checks for a function in the field "__add" in its metatable. If it finds one, Lua calls that function to perform the addition.

We call the keys in a metatable events and the values metamethods. In the previous example, the event is "add" and the metamethod is the function that performs the addition.

You may query the metatable of any value through the getmetatable function.

You may replace the metatable of tables through the setmetatable function. You shall not change the metatable of other types from Lua (except using the debug library); you must use the C API for that.

Tables and userdata have individual metatables (although multiple tables and userdata may share a same table as their metatable); values of all other types share one single metatable per type. So, there is one single metatable for all numbers, and for all strings, etc.

A metatable may control how an object behaves in arithmetic operations, order comparisons, concatenation, length operation, and indexing. A metatable may also define a function to be called when a userdata is garbage collected. For each of those operations Lua associates a specific key called an event. When Lua performs one of those operations over a value, it checks whether that value has a metatable with the corresponding event. If so, the value associated with that key (the metamethod) controls how Lua will perform the operation.

Metatables control the operations listed next. Each operation is identified by its corresponding name. The key for each operation is a string with its name prefixed by two underscores, `__´; for instance, the key for operation "add" is the string "__add". The semantics of these operations is better explained by a Lua function describing how the interpreter executes that operation.

The code in Lua shown in this section is only illustrative; the real behavior is hard coded in the interpreter and it is much more efficient than this simulation. All functions used in these descriptions (rawget, tonumber, etc.) are described in 9.2. In particular, to retrieve the metamethod of a given object, we use the expression

 metatable(obj)[event]

This should be read as

 rawget(getmetatable(obj) or {}, event)

That is, the access to a metamethod does not invoke other metamethods, and the access to objects with no metatables does not fail (it simply results in nil).

· "add": the + operation.

The function getbinhandler below defines how Lua chooses a handler for a binary operation. First, Lua tries the first operand. If its type does not define a handler for the operation, then Lua tries the second operand.

 function getbinhandler (op1, op2, event)

 return metatable(op1)[event] or metatable(op2)[event]

 end

Using that function, the behavior of the op1 + op2 is

 function add_event (op1, op2)

 local o1, o2 = tonumber(op1), tonumber(op2)

 if o1 and o2 then -- both operands are numeric?

 return o1 + o2 -- `+' here is the primitive `add'

 else -- at least one of the operands is not numeric

 local h = getbinhandler(op1, op2, "__add")

 if h then

 -- call the handler with both operands

 return h(op1, op2)

 else -- no handler available: default behavior

 error("...")

 end

 end

 end

· "sub": the - operation. Behavior similar to the "add" operation.

· "mul": the * operation. Behavior similar to the "add" operation.

· "div": the / operation. Behavior similar to the "add" operation.

· "mod": the % operation. Behavior similar to the "add" operation, with the operation o1 - floor(o1/o2)*o2 as the primitive operation.

· "pow": the ^ (exponentiation) operation. Behavior similar to the "add" operation, with the function pow (from the C math library) as the primitive operation.

· "unm": the unary - operation.

 function unm_event (op)

 local o = tonumber(op)

 if o then -- operand is numeric?

 return -o -- `-' here is the primitive `unm'

 else -- the operand is not numeric.

 -- Try to get a handler from the operand

 local h = metatable(op).__unm

 if h then

 -- call the handler with the operand

 return h(op)

 else -- no handler available: default behavior

 error("...")

 end

 end

 end

· "concat": the .. (concatenation) operation.

 function concat_event (op1, op2)

 if (type(op1) == "string" or type(op1) == "number") and

 (type(op2) == "string" or type(op2) == "number") then

 return op1 .. op2 -- primitive string concatenation

 else

 local h = getbinhandler(op1, op2, "__concat")

 if h then

 return h(op1, op2)

 else

 error("...")

 end

 end

 end

· "len": the # operation.

 function len_event (op)

 if type(op) == "string" then

 return strlen(op) -- primitive string length

 elseif type(op) == "table" then

 return #op -- primitive table length

 else

 local h = metatable(op).__len

 if h then

 -- call the handler with the operand

 return h(op)

 else -- no handler available: default behavior

 error("...")

 end

 end

 end

See 6.6.6 for a description of the length of a table.

· "eq": the == operation. The function getcomphandler defines how Lua chooses a metamethod for comparison operators. A metamethod only is selected when both objects being compared have the same type and the same metamethod for the selected operation.

 function getcomphandler (op1, op2, event)

 if type(op1) ~= type(op2) then return nil end

 local mm1 = metatable(op1)[event]

 local mm2 = metatable(op2)[event]

 if mm1 == mm2 then return mm1 else return nil end

 end

The "eq" event is defined as follows:

 function eq_event (op1, op2)

 if type(op1) ~= type(op2) then -- different types?

 return false -- different objects

 end

 if op1 == op2 then -- primitive equal?

 return true -- objects are equal

 end

 -- try metamethod

 local h = getcomphandler(op1, op2, "__eq")

 if h then

 return h(op1, op2)

 else

 return false

 end

 end

a ~= b is equivalent to not (a == b).

· "lt": the < operation.

 function lt_event (op1, op2)

 if type(op1) == "number" and type(op2) == "number" then

 return op1 < op2 -- numeric comparison

 elseif type(op1)=="string" and type(op2)=="string" then

 return op1 < op2 -- lexicographic comparison

 else

 local h = getcomphandler(op1, op2, "__lt")

 if h then

 return h(op1, op2)

 else

 error("...");

 end

 end

 end

a > b is equivalent to b < a.

· "le": the <= operation.

 function le_event (op1, op2)

 if type(op1) == "number" and type(op2) == "number" then

 return op1 <= op2 -- numeric comparison

 elseif type(op1)=="string" and type(op2)=="string" then

 return op1 <= op2 -- lexicographic comparison

 else

 local h = getcomphandler(op1, op2, "__le")

 if h then

 return h(op1, op2)

 else

 h = getcomphandler(op1, op2, "__lt")

 if h then

 return not h(op2, op1)

 else

 error("...");

 end

 end

 end

 end

a >= b is equivalent to b <= a. Note that, in the absence of a "le" metamethod, Lua tries the "lt", assuming that a <= b is equivalent to not (b < a).

· "index": The indexing access table[key].

 function gettable_event (table, key)

 local h

 if type(table) == "table" then

 local v = rawget(table, key)

 if v ~= nil then return v end

 h = metatable(table).__index

 if h == nil then return nil end

 else

 h = metatable(table).__index

 if h == nil then

 error("...");

 end

 end

 if type(h) == "function" then

 return h(table, key) -- call the handler

 else return h[key] -- or repeat operation on it

 end

 end

· "newindex": The indexing assignment table[key] = value.

 function settable_event (table, key, value)

 local h

 if type(table) == "table" then

 local v = rawget(table, key)

 if v ~= nil then rawset(table, key, value); return end

 h = metatable(table).__newindex

 if h == nil then rawset(table, key, value); return end

 else

 h = metatable(table).__newindex

 if h == nil then

 error("...");

 end

 end

 if type(h) == "function" then

 return h(table, key,value) -- call the handler

 else h[key] = value -- or repeat operation on it

 end

 end

· "call": called when Lua calls a value.

 function function_event (func, ...)

 if type(func) == "function" then

 return func(...) -- primitive call

 else

 local h = metatable(func).__call

 if h then

 return h(func, ...)

 else

 error("...")

 end

 end

 end

I.1.10 Environments

Besides metatables, objects of types thread, function, and userdata have another table associated with them, called their environment. Like metatables, environments are regular tables and multiple objects may share the same environment.

Environments associated with userdata have no meaning for Lua. It is only a feature for programmers to associate a table to a userdata.

Environments associated with threads are called global environments. They are used as the default environment for threads and non-nested functions created by that thread (through loadfile, loadstring or load) and may be directly accessed by C code (see 7.4).

Environments associated with C functions may be directly accessed by C code (see 7.4). They are used as the default environment for other C functions created by that function.

Environments associated with Lua functions are used to resolve all accesses to global variables within that function (see 6.4). They are used as the default environment for other Lua functions created by that function.

You may change the environment of a Lua function or the running thread by calling setfenv. You may get the environment of a Lua function or the running thread by calling getfenv. To manipulate the environment of other objects (userdata, C functions, other threads) you must use the C API.

I.1.11 Garbage collection

I.1.11.1 Basic Concepts

Lua performs automatic memory management. That means that you have to worry neither about allocating memory for new objects nor about freeing it when the objects are no longer needed. Lua manages memory automatically by running a garbage collector from time to time to collect all dead objects (that is, those objects that are no longer accessible from Lua). All objects in Lua are subject to automatic management: tables, userdata, functions, threads, and strings.

Lua implements an incremental mark-and-sweep collector. It uses two numbers to control its garbage-collection cycles: the garbage-collector pause and the garbage-collector step multiplier.

The garbage-collector pause controls how long the collector waits before starting a new cycle. Larger values make the collector less aggressive. Values smaller than 1 mean the collector will not wait to start a new cycle. A value of 2 means that the collector waits more or less to double the total memory in use before starting a new cycle.

The step multiplier controls the relative speed of the collector relative to memory allocation. Larger values make the collector more aggressive but also increases the size of each incremental step. Values smaller than 1 make the collector too slow and can result in the collector never finishing a cycle. The default, 2, means that the collector runs at "twice" the speed of memory allocation.

You may change those numbers calling lua_gc in C or collectgarbage in Lua. Both get as arguments percentage points (so an argument 100 means a real value of 1). With those functions you may also get direct control of the collector (e.g., stop and restart it).

I.1.11.2 Garbage-Collection metamethods

Using the C API, you may set garbage-collector metamethods for userdata (see 6.9). These metamethods are also called finalizers. Finalizers allow you to coordinate Lua's garbage collection with external resource management (such as closing files, network or database connections, or freeing your own memory).

Garbage userdata with a field __gc in their metatables are not collected immediately by the garbage collector. Instead, Lua puts them in a list. After the collection, Lua does the equivalent of the following function for each userdata in that list:

 function gc_event (udata)

 local h = metatable(udata).__gc

 if h then

 h(udata)

 end

 end

At the end of each garbage-collection cycle, the finalizers for userdata are called in reverse order of their creation, among those collected in that cycle. That is, the first finalizer to be called is the one associated with the userdata created last in the program.

I.1.11.3 Weak tables

A weak table is a table whose elements are weak references. A weak reference is ignored by the garbage collector. In other words, if the only references to an object are weak references, then the garbage collector will collect that object.

A weak table may have weak keys, weak values, or both. A table with weak keys allows the collection of its keys, but prevents the collection of its values. A table with both weak keys and weak values allows the collection of both keys and values. In any case, if either the key or the value is collected, the whole pair is removed from the table. The weakness of a table is controlled by the value of the __mode field of its metatable. If the __mode field is a string containing the character `k´, the keys in the table are weak. If __mode contains `v´, the values in the table are weak.

After you use a table as a metatable, you should not change the value of its field __mode. Otherwise, the weak behavior of the tables controlled by this metatable is undefined.

I.1.12 Coroutines

Lua supports coroutines, also called collaborative multithreading. A coroutine in Lua represents an independent thread of execution. Unlike threads in multithread systems, however, a coroutine only suspends its execution by explicitly calling a yield function.

You create a coroutine with a call to coroutine.create. Its sole argument is a function that is the main function of the coroutine. The create function only creates a new coroutine and returns a handle to it (an object of type thread); it does not start the coroutine execution.

When you first call coroutine.resume, passing as its first argument the thread returned by coroutine.create, the coroutine starts its execution, at the first line of its main function. Extra arguments passed to coroutine.resume are passed on to the coroutine main function. After the coroutine starts running, it runs until it terminates or yields.

A coroutine may terminate its execution in two ways: Normally, when its main function returns (explicitly or implicitly, after the last instruction); and abnormally, if there is an unprotected error. In the first case, coroutine.resume returns true, plus any values returned by the coroutine main function. In case of errors, coroutine.resume returns false plus an error message.

A coroutine yields by calling coroutine.yield. When a coroutine yields, the corresponding coroutine.resume returns immediately, even if the yield happens inside nested function calls (that is, not in the main function, but in a function directly or indirectly called by the main function). In the case of a yield, coroutine.resume also returns true, plus any values passed to coroutine.yield. The next time you resume the same coroutine, it continues its execution from the point where it yielded, with the call to coroutine.yield returning any extra arguments passed to coroutine.resume.

The coroutine.wrap function creates a coroutine, just like coroutine.create, but instead of returning the coroutine itself, it returns a function that, when called, resumes the coroutine. Any arguments passed to that function go as extra arguments to coroutine.resume. coroutine.wrap returns all the values returned by coroutine.resume, except the first one (the boolean error code). Unlike coroutine.resume, coroutine.wrap does not catch errors; any error is propagated to the caller.

As an example, consider the next code:

 function foo (a)

 print("foo", a)

 return coroutine.yield(2*a)

 end

 co = coroutine.create(function (a,b)

 print("co-body", a, b)

 local r = foo(a+1)

 print("co-body", r)

 local r, s = coroutine.yield(a+b, a-b)

 print("co-body", r, s)

 return b, "end"

 end)

 print("main", coroutine.resume(co, 1, 10))

 print("main", coroutine.resume(co, "r"))

 print("main", coroutine.resume(co, "x", "y"))

 print("main", coroutine.resume(co, "x", "y"))

When you run it, it produces the following output:

 co-body 1 10

 foo 2

 main true 4

 co-body r

 main true 11 -9

 co-body x y

 main true 10 end

 main false cannot resume dead coroutine

I.2 The application program interface

I.2.1 Basic Concepts

All C API functions and related types and constants are declared in the header file lua.h.

Even when we use the term "function", any facility in the API may be provided as a macro instead. All such macros use each of its arguments exactly once (except for the first argument, which is always a Lua state), and so do not generate any hidden side-effects.

As in most C libraries, the Lua API functions do not check their arguments for validity or consistency. However, you may change this behavior by compiling Lua with a proper definition for the macro luai_apicheck, in file luaconf.h.

I.2.2 The stack

Lua uses a virtual stack to pass values to and from C. Each element in this stack represents a Lua value (nil, number, string, etc.).

Whenever Lua calls C, the called function gets a new stack, which is independent of previous stacks and of stacks of C functions that are still active. That stack initially contains any arguments to the C function and it is where the C function pushes its results to be returned to the caller (see lua_CFunction).

For convenience, most query operations in the API do not follow a strict stack discipline. Instead, they may refer to any element in the stack by using an index: A positive index represents an absolute stack position (starting at 1); a negative index represents an offset relative to the top of the stack. More specifically, if the stack has n elements, then index 1 represents the first element (that is, the element that was pushed onto the stack first) and index n represents the last element; index -1 also represents the last element (that is, the element at the top) and index -n represents the first element. We say that an index is valid if it lies between 1 and the stack top (that is, if 1 <= abs(index) <= top).

I.2.3 Stack size

When you interact with Lua API, you are responsible for ensuring consistency. In particular, you are responsible for controlling stack overflow. You may use the function lua_checkstack to grow the stack size.

Whenever Lua calls C, it ensures that at least LUA_MINSTACK stack positions are available. LUA_MINSTACK is defined as 20, so that usually you do not have to worry about stack space unless your code has loops pushing elements onto the stack.

Most query functions accept as indices any value inside the available stack space, that is, indices up to the maximum stack size you have set through lua_checkstack. Such indices are called acceptable indices. More formally, we define an acceptable index as follows:

 (index < 0 && abs(index) <= top) || (index > 0 && index <= stackspace)

Note that 0 is never an acceptable index.

I.2.4 Pseudo-indices

Unless otherwise noted, any function that accepts valid indices may also be called with pseudo-indices, which represent some Lua values that are accessible to C code but which are not in the stack. Pseudo-indices are used to access the thread environment, the function environment, the registry, and the upvalues of a C function (see 7.5).

The thread environment (where global variables live) is always at pseudo-index LUA_GLOBALSINDEX. The environment of the running C function is always at pseudo-index LUA_ENVIRONINDEX.

To access and change the value of global variables, you may use regular table operations over an environment table. For instance, to access the value of a global variable, do

 lua_getfield(L, LUA_GLOBALSINDEX, varname);

I.2.5 C Closures

When a C function is created, it is possible to associate some values with it, thus creating a C closure; these values are called upvalues and are accessible to the function whenever it is called (see lua_pushcclosure).

Whenever a C function is called, its upvalues are located at specific pseudo-indices. Those pseudo-indices are produced by the macro lua_upvalueindex. The first value associated with a function is at position lua_upvalueindex(1), and so on. Any access to lua_upvalueindex(n), where n is greater than the number of upvalues of the current function, produces an acceptable (but invalid) index.

I.2.6 Registry

Lua provides a registry, a pre-defined table that may be used by any C code to store whatever Lua value it needs to store. This table is always located at pseudo-index LUA_REGISTRYINDEX. Any C library may store data into this table, but it should take care to choose keys different from those used by other libraries, to avoid collisions. Typically, you should use as key a string containing your library name or a light userdata with the address of a C object in your code.

The integer keys in the registry are used by the reference mechanism, implemented by the auxiliary library, and therefore should not be used for other purposes.

I.2.7 Error handling in C

Internally, Lua uses the C longjmp facility to handle errors. (You may also choose to use exceptions if you use C++; See file luaconf.h.) When Lua faces any error (such as memory allocation errors, type errors, syntax errors, and runtime errors) it raises an error; that is, it does a long jump. A protected environment uses setjmp to set a recover point; any error jumps to the most recent active recover point.

Almost any function in the API may raise an error, for instance due to a memory allocation error. The following functions run in protected mode (that is, they create a protected environment to run), so they never raise an error: lua_newstate, lua_close, lua_load, lua_pcall, and lua_cpcall.

Inside a C function you may raise an error by calling lua_error.

I.2.8 Functions and types

Here we list all functions and types from the C API in alphabetical order.

lua_Alloc

 typedef void * (*lua_Alloc) (void *ud, void *ptr, size_t osize, size_t nsize);

The type of the memory allocation function used by Lua states. The allocator function must provide a functionality similar to realloc, but not exactly the same. Its arguments are ud, an opaque pointer passed to lua_newstate; ptr, a pointer to the block being allocated/reallocated/freed; osize, the original size of the block; nsize, the new size of the block. ptr is NULL if and only if osize is zero. When nsize is zero, the allocator must return NULL; if osize is not zero, it should free the block pointed by ptr. When nsize is not zero, the allocator returns NULL if and only if it cannot fill the request. When nsize is not zero and osize is zero, the allocator should behave like malloc. When nsize and osize are not zero, the allocator behaves like realloc. Lua assumes that the allocator never fails when osize >= nsize.

Here is a simple implementation for the allocator function. It is used in the auxiliary library by lua_newstate.

 static void *l_alloc (void *ud, void *ptr, size_t osize, size_t nsize) {

 (void)ud; /* not used */

 (void)osize; /* not used */

 if (nsize == 0) {

 free(ptr); /* ANSI requires that free(NULL) has no effect */

 return NULL;

 }

 else

 /* ANSI requires that realloc(NULL, size) == malloc(size) */

 return realloc(ptr, nsize);

 }

lua_atpanic

 lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);

Sets a new panic function and returns the old one.

If an error happens outside any protected environment, Lua calls a panic function and then calls exit(EXIT_FAILURE), thus exiting the host application. Your panic function can avoid this exit by never returning (e.g., doing a long jump).

The panic function may access the error message at the top of the stack.

lua_call

 void lua_call (lua_State *L, int nargs, int nresults);

Calls a function.

To call a function you must use the following protocol: First, the function to be called is pushed onto the stack; then, the arguments to the function are pushed in direct order; that is, the first argument is pushed first. Finally you call lua_call; nargs is the number of arguments that you pushed onto the stack. All arguments and the function value are popped from the stack when the function is called. The function results are pushed onto the stack when the function returns. The number of results is adjusted to nresults, unless nresults is LUA_MULTRET. In that case, all results from the function are pushed. Lua takes care that the returned values fit into the stack space. The function results are pushed onto the stack in direct order (the first result is pushed first), so that after the call the last result is on the top of the stack.

Any error inside the called function is propagated upwards (with a longjmp).

The following example shows how the host program can do the equivalent to this Lua code:

 a = f("how", t.x, 14)

Here it is in C:

 lua_getfield(L, LUA_GLOBALSINDEX, "f");
/* function to be called */

 lua_pushstring(L, "how");

/* 1st argument */

 lua_getfield(L, LUA_GLOBALSINDEX, "t");
/* table to be indexed */

 lua_getfield(L, -1, "x");

/* push result of t.x (2nd arg) */

 lua_remove(L, -2);

/* remove `t' from the stack */

 lua_pushinteger(L, 14);

/* 3rd argument */

 lua_call(L, 3, 1);

/* call function with 3 arguments and 1 result */

 lua_setfield(L, LUA_GLOBALSINDEX, "a");
/* set global variable `a' */

Note that the code above is "balanced": at its end, the stack is back to its original configuration. This is considered good programming practice.

lua_CFunction

 typedef int (*lua_CFunction) (lua_State *L);

Type for C functions.

In order to communicate properly with Lua, a C function must use the following protocol, which defines the way parameters and results are passed: A C function receives its arguments from Lua in its stack in direct order (the first argument is pushed first). So, when the function starts, lua_gettop(L) returns the number of arguments received by the function. The first argument (if any) is at index 1 and its last argument is at index lua_gettop(L). To return values to Lua, a C function just pushes them onto the stack, in direct order (the first result is pushed first), and returns the number of results. Any other value in the stack below the results will be properly discarded by Lua. Like a Lua function, a C function called by Lua may also return many results.

As an example, the following function receives a variable number of numerical arguments and returns their average and sum:

static int foo (lua_State *L) {

 int n = lua_gettop(L); /* number of arguments */

 lua_Number sum = 0;

 int i;

 for (i = 1; i <= n; i++) {

 if (!lua_isnumber(L, i)) {

 lua_pushstring(L,"incorrect argument to function `average'");

 lua_error(L);

 }

 sum += lua_tonumber(L, i);

 }

 lua_pushnumber(L, sum/n); /* first result */

 lua_pushnumber(L, sum); /* second result */

 return 2; /* number of results */

}

lua_checkstack

 int lua_checkstack (lua_State *L, int extra);

Ensures that there are at least extra free stack slots in the stack. It returns false if it cannot grow the stack to that size. This function never shrinks the stack; if the stack is already larger than the new size, it is left unchanged.

lua_close

 void lua_close (lua_State *L);

Destroys all objects in the given Lua state (calling the corresponding garbage-collection metamethods, if any) and frees all dynamic memory used by that state. On several platforms, you do not need to call this function, because all resources are naturally released when the host program ends. On the other hand, long-running programs, such as a daemon or a web server, might need to release states as soon as they are not needed, to avoid growing too large.

lua_concat

 void lua_concat (lua_State *L, int n);

Concatenates the n values at the top of the stack, pops them, and leaves the result at the top. If n is 1, the result is that single string (that is, the function does nothing); if n is 0, the result is the empty string. Concatenation is done following the usual semantics of Lua (see 6.6.5).

lua_cpcall

 int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);

Calls the C function func in protected mode. func starts with only one element in its stack, a light userdata containing ud. In case of errors, lua_cpcall returns the same error codes as lua_pcall, plus the error object on the top of the stack; otherwise, it returns zero, and does not change the stack. All values returned by func are discarded.

lua_createtable

 void lua_createtable (lua_State *L, int narr, int nrec);

Creates a new empty table and pushes it onto the stack. The new table has space pre-allocated for narr array elements and nrec non-array elements. This pre-allocation is useful when you know exactly how many elements the table will have. Otherwise you may use the function lua_newtable.

lua_dump

 int lua_dump (lua_State *L, lua_Writer writer, void *data);

Dumps a function as a binary chunk. Receives a Lua function on the top of the stack and produces a binary chunk that, if loaded again, results in a function equivalent to the one dumped. As it produces parts of the chunk, lua_dump calls function writer (see lua_Writer) with the given data to write them.

The value returned is the error code returned by the last call to the writer; 0 means no errors.

This function does not pop the function from the stack.

lua_equal

 int lua_equal (lua_State *L, int index1, int index2);

Returns 1 if the two values in acceptable indices index1 and index2 are equal, following the semantics of the Lua == operator (that is, may call metamethods). Otherwise returns 0. Also returns 0 if any of the indices is non valid.

lua_error

 int lua_error (lua_State *L);

Generates a Lua error. The error message (which may actually be a Lua value of any type) must be on the stack top. This function does a long jump, and therefore never returns. (see luaL_error).

lua_gc

 int lua_gc (lua_State *L, int what, int data);

Controls the garbage collector.

This function performs several tasks, according to the value of the parameter what:

· LUA_GCSTOP--- stops the garbage collector.

· LUA_GCRESTART--- restarts the garbage collector.

· LUA_GCCOLLECT--- performs a full garbage-collection cycle.

· LUA_GCCOUNT--- returns the current amount of memory (in Kbytes) in use by Lua.

· LUA_GCCOUNTB--- returns the remainder of dividing the current amount of bytes of memory in use by Lua by 1024.

· LUA_GCSTEP--- performs an incremental step of garbage collection. The step "size" is controlled by data (larger values mean more steps) in a non-specified way. If you want to control the step size you must tune experimentally the value of data. The function returns 1 if that step finished a garbage-collection cycle.

· LUA_GCSETPAUSE--- sets data/100 as the new value for the pause of the collector (see 6.11). The function returns the previous value of the pause.

· LUA_GCSETSTEPMUL--- sets arg/100 as the new value for the step multiplier of the collector (see 6.11). The function returns the previous value of the step multiplier.

lua_getallocf

 lua_Alloc lua_getallocf (lua_State *L, void **ud);

Returns the memory allocator function of a given state. If ud is not NULL, Lua stores in *ud the opaque pointer passed to lua_newstate.

lua_getfenv

 void lua_getfenv (lua_State *L, int index);

Pushes on the stack the environment table of the value at the given index.

lua_getfield

 void lua_getfield (lua_State *L, int index, const char *k);

Pushes onto the stack the value t[k], where t is the value at the given valid index index. As in Lua, this function may trigger a metamethod for the "index" event (see 6.9).

lua_getglobal

 void lua_getglobal (lua_State *L, const char *name);

Pushes onto the stack the value of the global name. It is defined as a macro:

 #define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, s)

lua_getmetatable

 int lua_getmetatable (lua_State *L, int index);

Pushes onto the stack the metatable of the value at the given acceptable index. If the index is not valid, or if the value does not have a metatable, the function returns 0 and pushes nothing on the stack.

lua_gettable

 void lua_gettable (lua_State *L, int index);

Pushes onto the stack the value t[k], where t is the value at the given valid index index and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). As in Lua, this function may trigger a metamethod for the "index" event (see 6.9).

lua_gettop

 int lua_gettop (lua_State *L);

Returns the index of the top element in the stack. Because indices start at 1, that result is equal to the number of elements in the stack (and so 0 means an empty stack).

lua_insert

 void lua_insert (lua_State *L, int index);

Moves the top element into the given valid index, shifting up the elements above that position to open space. Shall not be called with a pseudo-index, because a pseudo-index is not an actual stack position.

lua_Integer

 typedef ptrdiff_t lua_Integer;

The type used by the Lua API to represent integral values.

By default it is a ptrdiff_t, which is usually the largest integral type the machine handles "comfortably".

lua_isboolean

 int lua_isboolean (lua_State *L, int index);

Returns 1 if the value at the given acceptable index has type boolean, and 0 otherwise.

lua_iscfunction

 int lua_iscfunction (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a C function, and 0 otherwise.

lua_isfunction

 int lua_isfunction (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a function (either C or Lua), and 0 otherwise.

lua_islightuserdata

 int lua_islightuserdata (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a light userdata, and 0 otherwise.

lua_isnil

 int lua_isnil (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is nil, and 0 otherwise.

lua_isnumber

 int lua_isnumber (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a number or a string convertible to a number, and 0 otherwise.

lua_isstring

 int lua_isstring (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a string or a number (which is always convertible to a string), and 0 otherwise.

lua_istable

 int lua_istable (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a table, and 0 otherwise.

lua_isthread

 int lua_isthread (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a thread, and 0 otherwise.

lua_isuserdata

 int lua_isuserdata (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a userdata (either full or light), and 0 otherwise.

lua_lessthan

 int lua_lessthan (lua_State *L, int index1, int index2);

Returns 1 if the value at acceptable index index1 is smaller than the value at acceptable index index2, following the semantics of the Lua < operator (that is, may call metamethods). Otherwise returns 0. Also returns 0 if any of the indices is non valid.

lua_load

 int lua_load (lua_State *L, lua_Reader reader, void *data, const char *chunkname);

Loads a Lua chunk. If there are no errors, lua_load pushes the compiled chunk as a Lua function on top of the stack. Otherwise, it pushes an error message. The return values of lua_load are:

· 0 --- no errors;

· LUA_ERRSYNTAX --- syntax error during pre-compilation.

· LUA_ERRMEM --- memory allocation error.

lua_load automatically detects whether the chunk is text or binary, and loads it accordingly (see program luac).

lua_load uses a user-supplied reader function to read the chunk (see lua_Reader). The data argument is an opaque value passed to the reader function.

The chunkname argument gives a name to the chunk, which is used for error messages and in debug information (see 7.9).

lua_newstate

 lua_State *lua_newstate (lua_Alloc f, void *ud);

Creates a new, independent state. Returns NULL if cannot create the state (due to lack of memory). The argument f is the allocator function; Lua does all memory allocation for that state through that function. The second argument, ud, is an opaque pointer that Lua simply passes to the allocator in every call.

lua_newtable

 void lua_newtable (lua_State *L);

Creates a new empty table and pushes it onto the stack. Equivalent to lua_createtable(L, 0, 0).

lua_newthread

 lua_State *lua_newthread (lua_State *L);

Creates a new thread, pushes it on the stack, and returns a pointer to a lua_State that represents this new thread. The new state returned by this function shares with the original state all global objects (such as tables), but has an independent execution stack.

There is no explicit function to close or to destroy a thread. Threads are subject to garbage collection, like any Lua object.

lua_newuserdata

 void *lua_newuserdata (lua_State *L, size_t size);

This function allocates a new block of memory with the given size, pushes on the stack a new full userdata with the block address, and returns this address.

Userdata represents C values in Lua. A full userdata represents a block of memory. It is an object (like a table): You must create it, it may have its own metatable, and you may detect when it is being collected. A full userdata is only equal to itself (under raw equality).

When Lua collects a full userdata with a gc metamethod, Lua calls the metamethod and marks the userdata as finalized. When that userdata is collected again then Lua frees its corresponding memory.

lua_next

 int lua_next (lua_State *L, int index);

Pops a key from the stack, and pushes a key-value pair from the table at the given index (the "next" pair after the given key). If there are no more elements in the table, then lua_next returns 0 (and pushes nothing).

A typical traversal looks like this:

 /* table is in the stack at index `t' */

 lua_pushnil(L); /* first key */

 while (lua_next(L, t) != 0) {

 /* `key' is at index -2 and `value' at index -1 */

 printf("%s - %s\n",

 lua_typename(L, lua_type(L, -2)), lua_typename(L, lua_type(L, -1)));

 lua_pop(L, 1); /* removes `value'; keeps `key' for next iteration */

 }

While traversing a table, do not call lua_tolstring directly on a key, unless you know that the key is actually a string. Recall that lua_tolstring changes the value at the given index; this confuses the next call to lua_next.

lua_Number

 typedef double lua_Number;

The type of numbers in Lua. By default, it is double, but that may be changed in luaconf.h.

Through the configuration file you may change Lua to operate with another type for numbers (e.g., float or long).

lua_objlen

 size_t lua_objlen (lua_State *L, int index);

Returns the "length" of the value at the given acceptable index: for strings, this is the string length; for tables, this is the result of the length operator (`#´); for userdata, this is the size of the block of memory allocated for the userdata; for other values, it is 0.

lua_pcall

 lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);

Calls a function in protected mode.

Both nargs and nresults have the same meaning as in lua_call. If there are no errors during the call, lua_pcall behaves exactly like lua_call. However, if there is any error, lua_pcall catches it, pushes a single value on the stack (the error message), and returns an error code. Like lua_call, lua_pcall always removes the function and its arguments from the stack.

If errfunc is 0, then the error message returned on the stack is exactly the original error message. Otherwise, errfunc is the stack index of an error handler function. (In the current implementation, that index shall not be a pseudo-index.) In case of runtime errors, that function will be called with the error message and its return value will be the message returned on the stack by lua_pcall.

Typically, the error handler function is used to add more debug information to the error message, such as a stack traceback. Such information cannot be gathered after the return of lua_pcall, since by then the stack has unwound.

The lua_pcall function returns 0 in case of success or one of the following error codes (defined in lua.h):

· LUA_ERRRUN --- a runtime error.

· LUA_ERRMEM --- memory allocation error. For such errors, Lua does not call the error handler function.

· LUA_ERRERR --- error while running the error handler function.

lua_pop

 void lua_pop (lua_State *L, int n);

Pops n elements from the stack.

lua_pushboolean

 void lua_pushboolean (lua_State *L, int b);

Pushes a boolean value with value b onto the stack.

lua_pushcclosure

 void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);

Pushes a new C closure onto the stack.

When a C function is created, it is possible to associate some values with it, thus creating a C closure (see 7.5); these values are then accessible to the function whenever it is called. To associate values with a C function, first these values should be pushed onto the stack (when there are multiple values, the first value is pushed first). Then lua_pushcclosure is called to create and push the C function onto the stack, with the argument n telling how many values should be associated with the function. lua_pushcclosure also pops these values from the stack.

lua_pushcfunction

 void lua_pushcfunction (lua_State *L, lua_CFunction f);

Pushes a C function onto the stack. This function receives a pointer to a C function and pushes on the stack a Lua value of type function that, when called, invokes the corresponding C function.

Any function to be registered in Lua must follow the correct protocol to receive its parameters and return its results (see lua_CFunction).

The call lua_pushcfunction(L, f) is equivalent to lua_pushcclosure(L, f, 0).

lua_pushfstring

 const char *lua_pushfstring (lua_State *L, const char *fmt, ...);

Pushes onto the stack a formatted string and returns a pointer to that string. It is similar to the C function sprintf, but has some important differences:

· You do not have to allocate the space for the result: The result is a Lua string and Lua takes care of memory allocation (and deallocation, through garbage collection).

· The conversion specifiers are quite restricted. There are no flags, widths, or precisions. The conversion specifiers may only be `%%´ (inserts a `%´ in the string), `%s´ (inserts a zero-terminated string, with no size restrictions), `%f´ (inserts a lua_Number), `%p´ (inserts a pointer as an hexadecimal numeral), `%d´ (inserts an int), and `%c´ (inserts an int as a character).

lua_pushinteger

 void lua_pushinteger (lua_State *L, lua_Integer n);

Pushes a number with value n onto the stack.

lua_pushlightuserdata

 void lua_pushlightuserdata (lua_State *L, void *p);

Pushes a light userdata onto the stack.

Userdata represents C values in Lua. A light userdata represents a pointer. It is a value (like a number): You do not create it, it has no metatables, it is not collected (as it was never created). A light userdata is equal to "any" light userdata with the same C address.

lua_pushlstring

 void lua_pushlstring (lua_State *L, const char *s, size_t len);

Pushes the string pointed by s with size len onto the stack. Lua makes (or reuses) an internal copy of the given string, so the memory at s may be freed or reused immediately after the function returns. The string may contain embedded zeros.

lua_pushnil

 void lua_pushnil (lua_State *L);

Pushes a nil value onto the stack.

lua_pushnumber

 void lua_pushnumber (lua_State *L, lua_Number n);

Pushes a number with value n onto the stack.

lua_pushstring

 void lua_pushstring (lua_State *L, const char *s);

Pushes the zero-terminated string pointed by s onto the stack. Lua makes (or reuses) an internal copy of the given string, so the memory at s may be freed or reused immediately after the function returns. The string shall not contain embedded zeros; it is assumed to end at the first zero.

lua_pushthread

 void lua_pushthread (lua_State *L);

Pushes the thread represented by L onto the stack.

lua_pushvalue

 void lua_pushvalue (lua_State *L, int index);

Pushes a copy of the element at the given valid index onto the stack.

lua_pushvfstring

 const char *lua_pushvfstring (lua_State *L, const char *fmt,
 va_list argp);

Equivalent to lua_pushfstring, except that it receives a va_list instead of a variable number of arguments.

lua_rawequal

 int lua_rawequal (lua_State *L, int index1, int index2);

Returns 1 if the two values in acceptable indices index1 and index2 are primitively equal (that is, without calling metamethods). Otherwise returns 0. Also returns 0 if any of the indices are non valid.

lua_rawget

 void lua_rawget (lua_State *L, int index);

Similar to lua_gettable, but does a raw access (i.e., without metamethods).

lua_rawgeti

 void lua_rawgeti (lua_State *L, int index, int n);

Pushes onto the stack the value t[n], where t is the value at the given valid index index. The access is raw; that is, it does not invoke metamethods.

lua_rawset

 void lua_rawset (lua_State *L, int index);

Similar to lua_settable, but does a raw assignment (i.e., without metamethods).

lua_rawseti

 void lua_rawseti (lua_State *L, int index, int n);

Does the equivalent of t[n] = v, where t is the value at the given valid index index and v is the value at the top of the stack,

This function pops the value from the stack. The assignment is raw; that is, it does not invoke metamethods.

lua_Reader

 typedef const char * (*lua_Reader)
 (lua_State *L, void *data, size_t *size);

The reader function used by lua_load. Every time it needs another piece of the chunk, lua_load calls the reader, passing along its data parameter. The reader must return a pointer to a block of memory with a new piece of the chunk and set size to the block size. The block must exist until the reader function is called again. To signal the end of the chunk, the reader must return NULL. The reader function may return pieces of any size greater than zero.

lua_register

 void lua_register (lua_State *L, const char *name, lua_CFunction f);

Sets the C function f as the new value of global name. It is defined as a macro:

 #define lua_register(L,n,f) (lua_pushcfunction(L, f), lua_setglobal(L, n))

lua_remove

 void lua_remove (lua_State *L, int index);

Removes the element at the given valid index, shifting down the elements above that position to fill the gap. Shall not be called with a pseudo-index, because a pseudo-index is not an actual stack position.

lua_replace

 void lua_replace (lua_State *L, int index);

Moves the top element into the given position (and pops it), without shifting any element (therefore replacing the value at the given position).

lua_resume

 int lua_resume (lua_State *L, int narg);

Starts and resumes a coroutine in a given thread.

To start a coroutine, you first create a new thread (see lua_newthread); then you push on its stack the main function plus any eventual arguments; then you call lua_resume, with narg being the number of arguments. This call returns when the coroutine suspends or finishes its execution. When it returns, the stack contains all values passed to lua_yield, or all values returned by the body function. lua_resume returns LUA_YIELD if the coroutine yields, 0 if the coroutine finishes its execution without errors, or an error code in case of errors (see lua_pcall). In case of errors, the stack is not unwound, so you may use the debug API over it. The error message is on the top of the stack. To restart a coroutine, you put on its stack only the values to be passed as results from yield, and then call lua_resume.

lua_setallocf

 void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);

Changes the allocator function of a given state to f with user data ud.

lua_setfenv

 int lua_setfenv (lua_State *L, int index);

Pops a table from the stack and sets it as the new environment for the value at the given index. If the value at the given index is neither a function nor a thread nor a userdata, lua_setfenv returns 0. Otherwise it returns 1.

lua_setfield

 void lua_setfield (lua_State *L, int index, const char *k);

Does the equivalent to t[k] = v, where t is the value at the given valid index index and v is the value at the top of the stack,

This function pops the value from the stack. As in Lua, this function may trigger a metamethod for the "newindex" event (see 6.9).

lua_setglobal

 void lua_setglobal (lua_State *L, const char *name);

Pops a value from the stack and sets it as the new value of global name. It is defined as a macro:

 #define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, s)

lua_setmetatable

 int lua_setmetatable (lua_State *L, int index);

Pops a table from the stack and sets it as the new metatable for the value at the given acceptable index.

lua_settable

 void lua_settable (lua_State *L, int index);

Does the equivalent to t[k] = v, where t is the value at the given valid index index, v is the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. As in Lua, this function may trigger a metamethod for the "newindex" event (see 6.9).

lua_settop

 void lua_settop (lua_State *L, int index);

Accepts any acceptable index, or 0, and sets the stack top to that index. If the new top is larger than the old one, then the new elements are filled with nil. If index is 0, then all stack elements are removed.

lua_State

 typedef struct lua_State lua_State;

Opaque structure that keeps the whole state of a Lua interpreter. The Lua library is fully reentrant: it has no global variables. All information about a state is kept in this structure.

A pointer to this state must be passed as the first argument to every function in the library, except to lua_newstate, which creates a Lua state from scratch.

lua_status

 int lua_status (lua_State *L);

Returns the status of the thread L.

The status may be 0 for a normal thread, an error code if the thread finished its execution with an error, or LUA_YIELD if the thread is suspended.

lua_toboolean

 int lua_toboolean (lua_State *L, int index);

Converts the Lua value at the given acceptable index to a C boolean value (0 or 1). Like all tests in Lua, lua_toboolean returns 1 for any Lua value different from false and nil; otherwise it returns 0. It also returns 0 when called with a non-valid index. (If you want to accept only actual boolean values, use lua_isboolean to test the value's type.)

lua_tocfunction

 lua_CFunction lua_tocfunction (lua_State *L, int index);

Converts a value at the given acceptable index to a C function. That value must be a C function; otherwise, returns NULL.

lua_tointeger

 lua_Integer lua_tointeger (lua_State *L, int idx);

Converts the Lua value at the given acceptable index to the signed integral type lua_Integer. The Lua value must be a number or a string convertible to a number (see 6.3.2); otherwise, lua_tointeger returns 0.

If the number is not an integer, it is truncated in some non-specified way.

lua_tolstring

 const char *lua_tolstring (lua_State *L, int index, size_t *len);

Converts the Lua value at the given acceptable index to a string (const char*). If len is not NULL, it also sets *len with the string length. The Lua value must be a string or a number; otherwise, the function returns NULL. If the value is a number, then lua_tolstring also changes the actual value in the stack to a string. (This change confuses lua_next when lua_tolstring is applied to keys during a table traversal.)

lua_tolstring returns a fully aligned pointer to a string inside the Lua state. This string always has a zero (`\0´) after its last character (as in C), but may contain other zeros in its body. Because Lua has garbage collection, there is no guarantee that the pointer returned by lua_tolstring will be valid after the corresponding value is removed from the stack.

lua_tonumber

 lua_Number lua_tonumber (lua_State *L, int index);

Converts the Lua value at the given acceptable index to a number (see lua_Number). The Lua value must be a number or a string convertible to a number (see 6.3.2); otherwise, lua_tonumber returns 0.

lua_topointer

 const void *lua_topointer (lua_State *L, int index);

Converts the value at the given acceptable index to a generic C pointer (void*). The value may be a userdata, a table, a thread, or a function; otherwise, lua_topointer returns NULL. Lua ensures that different objects return different pointers. There is no direct way to convert the pointer back to its original value.

Typically this function is used only for debug information.

lua_tostring

 const char *lua_tostring (lua_State *L, int index);

Equivalent to lua_tolstring with len equal to NULL.

lua_tothread

 lua_State *lua_tothread (lua_State *L, int index);

Converts the value at the given acceptable index to a Lua thread (represented as lua_State*). This value must be a thread; otherwise, the function returns NULL.

lua_touserdata

 void *lua_touserdata (lua_State *L, int index);

If the value at the given acceptable index is a full userdata, returns its block address. If the value is a light userdata, returns its pointer. Otherwise, returns NULL.

lua_type

 int lua_type (lua_State *L, int index);

Returns the type of the value in the given acceptable index, or LUA_TNONE for a non-valid index (that is, an index to an "empty" stack position). The types returned by lua_type are coded by the following constants defined in lua.h: LUA_TNIL, LUA_TNUMBER, LUA_TBOOLEAN, LUA_TSTRING, LUA_TTABLE, LUA_TFUNCTION, LUA_TUSERDATA, LUA_TTHREAD, and LUA_TLIGHTUSERDATA.

lua_typename

 const char *lua_typename (lua_State *L, int tp);

Returns the name of the type encoded by the value tp, which must be one the values returned by lua_type.

lua_Writer

 typedef int (*lua_Writer) (lua_State *L, const void* p, size_t sz, void* ud);

The writer function used by lua_dump. Every time it produces another piece of chunk, lua_dump calls the writer, passing along the buffer to be written (p), its size (sz), and the data parameter supplied to lua_dump.

The writer returns an error code: 0 means no errors; any other value means an error and stops lua_dump from calling the writer again.

lua_xmove

 void lua_xmove (lua_State *from, lua_State *to, int n);

Exchange values between different threads of the same global state.

This function pops n values from the stack from, and pushes them onto the stack to.

lua_yield

 int lua_yield (lua_State *L, int nresults);

Yields a coroutine.

This function should only be called as the return expression of a C function, as follows:

 return lua_yield (L, nresults);

When a C function calls lua_yield in that way, the running coroutine suspends its execution, and the call to lua_resume that started this coroutine returns. The parameter nresults is the number of values from the stack that are passed as results to lua_resume.

I.2.9 The debug interface

Lua has no built-in debugging facilities. Instead, it offers a special interface by means of functions and hooks. This interface allows the construction of different kinds of debuggers, profilers, and other tools that need "inside information" from the interpreter.

lua_Debug

 typedef struct lua_Debug {

 int event;

 const char *name;

/* (n) */

 const char *namewhat;
/* (n) */

 const char *what;

/* (S) */

 const char *source;

/* (S) */

 int currentline;

/* (l) */

 int nups;

/* (u) number of upvalues */

 int linedefined;

/* (S) */

 int lastlinedefined;

/* (S) */

 char short_src[LUA_IDSIZE];
/* (S) */

 /* private part */

 ...

 } lua_Debug;

A structure used to carry different pieces of information about an active function. lua_getstack fills only the private part of this structure, for later use. To fill the other fields of lua_Debug with useful information, call lua_getinfo.

The fields of lua_Debug have the following meaning:

· source --- If the function was defined in a string, then source is that string. If the function was defined in a file, then source starts with a `@´ followed by the file name.

· short_src --- a "printable" version of source, to be used in error messages.

· linedefined --- the line number where the definition of the function starts.

· lastlinedefined --- the line number where the definition of the function ends.

· what --- the string "Lua" if the function is a Lua function, "C" if it is a C function, "main" if it is the main part of a chunk, and "tail" if it was a function that did a tail call. In the latter case, Lua has no other information about the function.

· currentline --- the current line where the given function is executing. When no line information is available, currentline is set to -1.

· name --- a reasonable name for the given function. Because functions in Lua are first-class values, they do not have a fixed name: Some functions may be the value of multiple global variables, while others may be stored only in a table field. The lua_getinfo function checks how the function was called to find a suitable name. If it cannot find a name, then name is set to NULL.

· namewhat --- explains the name field. The value of namewhat may be "global", "local", "method", "field", "upvalue", or "" (the empty string), according to how the function was called. (Lua uses the empty string when no other option seems to apply.)

· nups --- the number of upvalues of the function.

lua_gethook

 lua_Hook lua_gethook (lua_State *L);

Returns the current hook function.

lua_gethookcount

 int lua_gethookcount (lua_State *L);

Returns the current hook count.

lua_gethookmask

 int lua_gethookmask (lua_State *L);

Returns the current hook mask.

lua_getinfo

 int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);

Fills the fields of lua_Debug with useful information.

This function returns 0 on error (for instance, an invalid option in what). Each character in the string what selects some fields of the structure ar to be filled, as indicated by the letter in parentheses in the definition of lua_Debug: `S´ fills in the fields source, linedefined, lastlinedefined, and what; `l´ fills in the field currentline, etc. Moreover, `f´ pushes onto the stack the function that is running at the given level.

To get information about a function that is not active (that is, not in the stack), you push it onto the stack and start the what string with the character `>´. For instance, to know in which line a function f was defined, you may write the following code:

 lua_Debug ar;

 lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* get global `f' */

 lua_getinfo(L, ">S", &ar);

 printf("%d\n", ar.linedefined);

lua_getlocal

 const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);

Gets information about a local variable of a given activation record. The parameter ar must be a valid activation record that was filled by a previous call to lua_getstack or given as argument to a hook (see lua_Hook). The index n selects which local variable to inspect (1 is the first parameter or active local variable, and so on, until the last active local variable). lua_getlocal pushes the variable's value onto the stack and returns its name.

Variable names starting with `(´ (open parentheses) represent internal variables (loop control variables, temporaries, and C function locals).

Returns NULL (and pushes nothing) when the index is greater than the number of active local variables.

lua_getstack

 int lua_getstack (lua_State *L, int level, lua_Debug *ar);

Get information about the interpreter runtime stack.

This function fills parts of a lua_Debug structure with an identification of the activation record of the function executing at a given level. Level 0 is the current running function, whereas level n+1 is the function that has called level n. When there are no errors, lua_getstack returns 1; when called with a level greater than the stack depth, it returns 0.

lua_getupvalue

 const char *lua_getupvalue (lua_State *L, int funcindex, int n);

Gets information about a closure's upvalue. (For Lua functions, upvalues are the external local variables that the function uses, and that consequently are included in its closure.) lua_getupvalue gets the index n of an upvalue, pushes the upvalue's value onto the stack, and returns its name. funcindex points to the closure in the stack. (Upvalues have no particular order, as they are active through the whole function. So, they are numbered in an arbitrary order.)

Returns NULL (and pushes nothing) when the index is greater than the number of upvalues. For C functions, this function uses the empty string "" as a name for all upvalues.

lua_Hook

 typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);

Type for debugging hook functions.

Whenever a hook is called, its ar argument has its field event set to the specific event that triggered the hook. Lua identifies these events with the following constants: LUA_HOOKCALL, LUA_HOOKRET, LUA_HOOKTAILRET, LUA_HOOKLINE, and LUA_HOOKCOUNT. Moreover, for line events, the field currentline is also set. To get the value of any other field in ar, the hook must call lua_getinfo. For return events, event may be LUA_HOOKRET, the normal value, or LUA_HOOKTAILRET. In the latter case, Lua is simulating a return from a function that did a tail call; in this case, it is useless to call lua_getinfo.

While Lua is running a hook, it disables other calls to hooks. Therefore, if a hook calls back Lua to execute a function or a chunk, that execution occurs without any calls to hooks.

lua_sethook

 int lua_sethook (lua_State *L, lua_Hook func, int mask, int count);

Sets the debugging hook function.

func is the hook function. mask specifies on which events the hook will be called: It is formed by a bitwise or of the constants LUA_MASKCALL, LUA_MASKRET, LUA_MASKLINE, and LUA_MASKCOUNT. The count argument is only meaningful when the mask includes LUA_MASKCOUNT. For each event, the hook is called as explained below:

· The call hook is called when the interpreter calls a function. The hook is called just after Lua enters the new function, before the function gets its arguments.

· The return hook is called when the interpreter returns from a function. The hook is called just before Lua leaves the function. You have no access to the values to be returned by the function.

· The line hook is called when the interpreter is about to start the execution of a new line of code, or when it jumps back in the code (even to the same line). (This event only happens while Lua is executing a Lua function.)

· The count hook is called after the interpreter executes every count instructions. (This event only happens while Lua is executing a Lua function.)

A hook is disabled by setting mask to zero.

lua_setlocal

 const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);

Sets the value of a local variable of a given activation record. Parameters ar and n are as in lua_getlocal (see lua_getlocal). lua_setlocal assigns the value at the top of the stack to the variable and returns its name. It also pops the value from the stack.

Returns NULL (and pops nothing) when the index is greater than the number of active local variables.

lua_setupvalue

 const char *lua_setupvalue (lua_State *L, int funcindex, int n);

Sets the value of a closure's upvalue. Parameters funcindex and n are as in lua_getupvalue (see lua_getupvalue). It assigns the value at the top of the stack to the upvalue and returns its name. It also pops the value from the stack.

Returns NULL (and pops nothing) when the index is greater than the number of upvalues.

I.3 The auxiliary library

I.3.1 Basic Concepts

The auxiliary library provides several convenient functions to interface C with Lua. While the basic API provides the primitive functions for all interactions between C and Lua, the auxiliary library provides higher-level functions for some common tasks.

All functions from the auxiliary library are defined in header file lauxlib.h and have a prefix luaL_.

All functions in the auxiliary library are built on top of the basic API, and so they provide nothing that cannot be done with that API.

Several functions in the auxiliary library are used to check C function arguments. Their names are always luaL_check* or luaL_opt*. All of these functions raise an error if the check is not satisfied. Because the error message is formatted for arguments (e.g., "bad argument #1"), you should not use these functions for other stack values.

I.3.2 Functions and types

Here we list all functions and types from the auxiliary library in alphabetical order.

luaL_addchar

 void luaL_addchar (luaL_Buffer B, char c);

Adds the character c to the buffer B (see luaL_Buffer).

luaL_addlstring

 void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);

Adds the string pointed by s with length l to the buffer B (see luaL_Buffer). The string may contain embedded zeros.

luaL_addsize

 void luaL_addsize (luaL_Buffer B, size_t n);

Adds a string of length n previously copied to the buffer area (see luaL_prepbuffer) to the buffer B (see luaL_Buffer).

luaL_addstring

 void luaL_addstring (luaL_Buffer *B, const char *s);

Adds the zero-terminated string pointed by s to the buffer B (see luaL_Buffer). The string shall not contain embedded zeros.

luaL_addvalue

 void luaL_addvalue (luaL_Buffer *B);

Adds the value at the top of the stack to the buffer B (see luaL_Buffer). Pops the value.

This is the only function on string buffers that may (and must) be called with an extra element on the stack, which is the value to be added to the buffer.

luaL_argcheck

 void luaL_argcheck (lua_State *L, int cond, int numarg, const char *extramsg);

Checks whether cond is true. If not, raises an error with message "bad argument #<numarg> to <func> (<extramsg>)", where func is retrieved from the call stack.

luaL_argerror

 int luaL_argerror (lua_State *L, int numarg, const char *extramsg);

Raises an error with message "bad argument #<numarg> to <func> (<extramsg>)", where func is retrieved from the call stack.

This function never returns, but it is an idiom to use it as return luaL_argerror ... in C functions.

luaL_Buffer

 typedef struct luaL_Buffer luaL_Buffer;

Type for a string buffer.

A string buffer allows C code to build Lua strings piecemeal. Its pattern of use is as follows:

· First you declare a variable b of type luaL_Buffer.

· Then you initialize it with a call luaL_buffinit(L, &b).

· Then you add string pieces to the buffer calling any of the luaL_add* functions.

· You finish by calling luaL_pushresult(&b). That call leaves the final string on the top of the stack.

During its normal operation, a string buffer uses a variable number of stack slots. So, while using a buffer, you shall not assume that you know where the top of the stack is. You may use the stack between successive calls to buffer operations as long as that use is balanced; that is, when you call a buffer operation, the stack is at the same level it was immediately after the previous buffer operation. (The only exception to this rule is luaL_addvalue.) After calling luaL_pushresult the stack is back to its level when the buffer was initialized, plus the final string on its top.

luaL_buffinit

 void luaL_buffinit (lua_State *L, luaL_Buffer *B);

Initializes a buffer B. This function does not allocate any space; the buffer must be declared as a variable (see luaL_Buffer).

luaL_callmeta

 int luaL_callmeta (lua_State *L, int obj, const char *e);

Calls a metamethod.

If the object at index obj has a metatable and that metatable has a field e, this function calls that field and passes the object as its only argument. In that case this function returns 1 and pushes on the stack the value returned by the call. If there is no metatable or no metamethod, this function returns 0 (without pushing any value on the stack).

luaL_checkany

 void luaL_checkany (lua_State *L, int narg);

Checks whether the function has an argument of any type (including nil) at position narg.

luaL_checkint

 int luaL_checkint (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns that number cast to an int.

luaL_checkinteger

 lua_Integer luaL_checkinteger (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns that number cast to a lua_Integer.

luaL_checklong

 long luaL_checklong (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns that number cast to a long.

luaL_checklstring

const char *luaL_checklstring (lua_State *L, int narg, size_t *l);

Checks whether the function argument narg is a string and returns that string; if l is not NULL fills *l with the string's length.

luaL_checknumber

 lua_Number luaL_checknumber (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns that number.

luaL_checkoption

 int luaL_checkoption (lua_State *L, int narg, const char *def, const char *const lst[]);

Checks whether the function argument narg is a string and searches for that string into the array lst (which must be NULL-terminated). If def is not NULL, uses def as a default value when the function has no argument narg or if that argument is nil.

Returns the index in the array where the string was found. Raises an error if the argument is not a string or if the string cannot be found.

This is a useful function for mapping strings to C enums. The usual convention in Lua libraries is to use strings instead of numbers to select options.

luaL_checkstack

 void luaL_checkstack (lua_State *L, int sz, const char *msg);

Grows the stack size to top + sz elements, raising an error if the stack cannot grow to that size. msg is an additional text to go into the error message.

luaL_checkstring

 const char *luaL_checkstring (lua_State *L, int narg);

Checks whether the function argument narg is a string and returns that string.

luaL_checktype

 void luaL_checktype (lua_State *L, int narg, int t);

Checks whether the function argument narg has type t.

luaL_checkudata

 void *luaL_checkudata (lua_State *L, int narg, const char *tname);

Checks whether the function argument narg is a userdata of the type tname (see luaL_newmetatable).

luaL_error

 int luaL_error (lua_State *L, const char *fmt, ...);

Raises an error. The error message format is given by fmt plus any extra arguments, following the same rules of lua_pushfstring. It also adds at the beginning of the message the file name and the line number where the error occurred, if that information is available.

This function never returns, but it is an idiom to use it as return luaL_error ... in C functions.

luaL_getmetafield

 int luaL_getmetafield (lua_State *L, int obj, const char *e);

Pushes on the stack the field e from the metatable of the object at index obj. If the object does not have a metatable, or if the metatable does not have that field, returns 0 and pushes nothing.

luaL_getmetatable

 void luaL_getmetatable (lua_State *L, const char *tname);

Pushes on the stack the metatable associated to name tname in the registry (see luaL_newmetatable).

luaL_gsub

 const char *luaL_gsub (lua_State *L, const char *s, const char *p, const char *r);

Creates a copy of string s by replacing any occurrence of the string p with the string r. Pushes the resulting string on the stack and returns it.

luaL_loadbuffer

 int luaL_loadbuffer (lua_State *L, const char *buff, size_t sz, const char *name);

Loads a buffer as a Lua chunk. This function uses lua_load to load the chunk in the buffer pointed by buff with size sz.

This function returns the same results as lua_load. name is the chunk name, used for debug information and error messages.

luaL_loadfile

 int luaL_loadfile (lua_State *L, const char *filename);

Loads a file as a Lua chunk. This function uses lua_load to load the chunk in the file named filename. If filename is NULL, then it loads from the standard input. The first line in the file is ignored if it starts with a #.

This function returns the same results as lua_load, but it has an extra error code LUA_ERRFILE if it cannot open/read the file.

luaL_loadstring

 int luaL_loadstring (lua_State *L, const char *s);

Loads a string as a Lua chunk. This function uses lua_load to load the chunk in the zero-terminated string s.

This function returns the same results as lua_load.

luaL_newmetatable

 int luaL_newmetatable (lua_State *L, const char *tname);

If the registry already has the key tname, returns 0. Otherwise, creates a new table to be used as a metatable for userdata, adds it to the registry with key tname, and returns 1.

In both cases pushes on the stack the final value associated with tname in the registry.

luaL_newstate

 lua_State *luaL_newstate (void);

Creates a new Lua state, calling lua_newstate with an allocation function based on the standard C realloc function and setting a panic function (see lua_atpanic) that prints an error message to the standard error output in case of fatal errors.

Returns the new state, or NULL if there is a memory allocation error.

luaL_openlibs

 void luaL_openlibs (lua_State *L);

Opens all standard Lua libraries into the given state.

luaL_optint

 int luaL_optint (lua_State *L, int narg, int d);

If the function argument narg is a number, returns that number cast to an int. If that argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_optinteger

 lua_Integer luaL_optinteger (lua_State *L, int narg, lua_Integer d);

If the function argument narg is a number, returns that number cast to a lua_Integer. If that argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_optlong

 long luaL_optlong (lua_State *L, int narg, long d);

If the function argument narg is a number, returns that number cast to a long. If that argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_optlstring

 const char *luaL_optlstring (lua_State *L, int narg, const char *d, size_t *l);

If the function argument narg is a string, returns that string. If that argument is absent or is nil, returns d. Otherwise, raises an error.

If l is not NULL, fills the position *l with the results's length.

luaL_optnumber

 lua_Number luaL_optnumber (lua_State *L, int narg, lua_Number d);

If the function argument narg is a number, returns that number. If that argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_optstring

 const char *luaL_optstring (lua_State *L, int narg, const char *d);

If the function argument narg is a string, returns that string. If that argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_prepbuffer

 char *luaL_prepbuffer (luaL_Buffer *B);

Returns an address to a space of size LUAL_BUFFERSIZE where you may copy a string to be added to buffer B (see luaL_Buffer). After copying the string into that space you must call luaL_addsize with the size of the string to actually add it to the buffer.

luaL_pushresult

 void luaL_pushresult (luaL_Buffer *B);

Finishes the use of buffer B leaving the final string on the top of the stack.

luaL_ref

 int luaL_ref (lua_State *L, int t);

Creates and returns a reference, in the table at index t, for the object at the top of the stack (and pops the object).

A reference is a unique integer key. As long as you do not manually add integer keys into table t, luaL_ref ensures the uniqueness of the key it returns. You may retrieve an object referred by reference r by calling lua_rawgeti(L, t, r). Function luaL_unref frees a reference and its associated object.

If the object at the top of the stack is nil, luaL_ref returns the constant LUA_REFNIL. The constant LUA_NOREF is guaranteed to be different from any reference returned by luaL_ref.

luaL_Reg

 typedef struct luaL_Reg {

 const char *name;

 lua_CFunction func;

 } luaL_Reg;

Type for arrays of functions to be registered by luaL_register. name is the function name and func is a pointer to the function. Any array of luaL_Reg must end with an sentinel entry in which both name and func are NULL.

luaL_register

 void luaL_register (lua_State *L, const char *libname, const luaL_Reg *l);

Opens a library.

When called with libname equal to NULL, simply registers all functions in the list l (see luaL_Reg) into the table on the top of the stack.

When called with a non-null libname, creates a new table t, sets it as the value of the global variable libname, sets it as the value of package.loaded[libname], and registers on it all functions in the list l. If there is a table in package.loaded[libname] or in variable libname, reuses that table instead of creating a new one.

In any case the function leaves the table on the top of the stack.

luaL_typename

 const char *luaL_typename (lua_State *L, int idx);

Returns the name of the type of the value at index idx.

luaL_typerror

 int luaL_typerror (lua_State *L, int narg, const char *tname);

Generates an error with a message like

 <location>: bad argument <narg> to <function> (<tname> expected, got <realt>)

where <location> is produced by luaL_where, <function> is the name of the current function, and <realt> is the type name of the actual argument.

luaL_unref

 void luaL_unref (lua_State *L, int t, int ref);

Releases reference ref from the table at index t (see luaL_ref). The entry is removed from the table, so that the referred object may be collected. The reference ref is also freed to be used again.

If ref is LUA_NOREF or LUA_REFNIL, luaL_unref does nothing.

luaL_where

 void luaL_where (lua_State *L, int lvl);

Pushes on the stack a string identifying the current position of the control at level lvl in the call stack. Typically this string has the format <chunkname>:<currentline>:. Level 0 is the running function, level 1 is the function that called the running function, etc.

This function is used to build a prefix for error messages.

I.4 Standard libraries

I.4.1 Overview

The standard Lua libraries provide useful functions that are implemented directly through the C API. Some of these functions provide essential services to the language (e.g., type and getmetatable); others provide access to "outside" services (e.g., I/O); and others could be implemented in Lua itself, but are quite useful or have critical performance requirements that deserve an implementation in C (e.g., sort).

All libraries are implemented through the official C API and are provided as separate C modules. Currently, Lua has the following standard libraries:

· basic library;

· package library;

· string manipulation;

· table manipulation;

· mathematical functions (sin, log, etc.);

· input and output;

· operating system facilities;

· debug facilities.

Except for the basic and package libraries, each library provides all its functions as fields of a global table or as methods of its objects.

To have access to these libraries, the C host program must call luaL_openlibs, which open all standard libraries. Alternatively, it may open them individually by calling luaopen_base (for the basic library), luaopen_package (for the package library), luaopen_string (for the string library), luaopen_table (for the table library), luaopen_math (for the mathematical library), luaopen_io (for the I/O and the Operating System libraries), and luaopen_debug (for the debug library). These functions are declared in lualib.h and should not be called directly: you must call them like any other Lua C function, e.g., by using lua_call.

I.4.2 Basic functions

The basic library provides some core functions to Lua. If you do not include this library in your application, you should check carefully whether you need to provide implementations for some of its facilities.

assert (v [, message])

Issues an error when the value of its argument v is false (i.e., nil or false); otherwise, returns all its arguments. message is an error message; when absent, it defaults to "assertion failed!"

collectgarbage (opt [, arg])

This function is a generic interface to the garbage collector. It performs different functions according to its first argument, opt:

· "stop" --- stops the garbage collector.

· "restart" --- restarts the garbage collector.

· "collect" --- performs a full garbage-collection cycle.

· "count" --- returns the total memory in use by Lua (in Kbytes).

· "step" --- performs a garbage-collection step. The step "size" is controlled by arg (larger values mean more steps) in a non-specified way. If you want to control the step size you must tune experimentally the value of arg. Returns true if that step finished a collection cycle.

· "steppause" --- sets arg/100 as the new value for the pause of the collector (see 6.11).

· "setstepmul" --- sets arg/100 as the new value for the step multiplier of the collector (see 6.11).

dofile (filename)

Opens the named file and executes its contents as a Lua chunk. When called without arguments, dofile executes the contents of the standard input (stdin). Returns all values returned by the chunk. In case of errors, dofile propagates the error to its caller (that is, dofile does not run in protected mode).

error (message [, level])

Terminates the last protected function called and returns message as the error message. Function error never returns.

Usually, error adds some information about the error position at the beginning of the message. The level argument specifies how to get the error position. With level 1 (the default), the error position is where the error function was called. Level 2 points the error to where the function that called error was called; and so on. Passing a level 0 avoids the addition of error position information to the message.

_G

A global variable (not a function) that holds the global environment (that is, _G._G = _G). Lua itself does not use this variable; changing its value does not affect any environment, nor vice-versa. (Use setfenv to change environments.)

getfenv (f)

Returns the current environment in use by the function. f may be a Lua function or a number that specifies the function at that stack level: Level 1 is the function calling getfenv. If the given function is not a Lua function, or if f is 0, getfenv returns the global environment. The default for f is 1.

getmetatable (object)

If object does not have a metatable, returns nil. Otherwise, if the object's metatable has a "__metatable" field, returns the associated value. Otherwise, returns the metatable of the given object.

ipairs (t)

Returns three values: an iterator function, the table t, and 0, so that the construction

 for i,v in ipairs(t) do ... end

will iterate over the pairs (1,t[1]), (2,t[2]), ..., up to the first integer key with a nil value in the table.

See next for the caveats of modifying the table during its traversal.

load (func [, chunkname])

Loads a chunk using function func to get its pieces. Each call to func must return a string that concatenates with previous results. A return of nil (or no value) signals the end of the chunk.

If there are no errors, returns the compiled chunk as a function; otherwise, returns nil plus the error message. The environment of the returned function is the global environment.

chunkname is used as the chunk name for error messages and debug information.

loadfile ([filename])

Similar to load, but gets the chunk from file filename or from the standard input, if no file name is given.

loadstring (string [, chunkname])

Similar to load, but gets the chunk from the given string.

To load and run a given string, use the idiom

 assert(loadstring(s))()

next (table [, index])

Allows a program to traverse all fields of a table. Its first argument is a table and its second argument is an index in this table. next returns the next index of the table and its associated value. When called with nil as its second argument, next returns an initial index and its associated value. When called with the last index, or with nil in an empty table, next returns nil. If the second argument is absent, then it is interpreted as nil. In particular, you may use next(t) to check whether a table is empty.

Lua has no declaration of fields. There is no difference between a field not present in a table or a field with value nil. Therefore, next only considers fields with non-nil values. The order in which the indices are enumerated is not specified, even for numeric indices. (To traverse a table in numeric order, use a numerical for or the ipairs function.)

The behavior of next is undefined if, during the traversal, you assign any value to a non-existent field in the table. You may however modify existing fields. In particular, you may clear existing fields.

pairs (t)

Returns three values: the next function, the table t, and nil, so that the construction

 for k,v in pairs(t) do ... end

will iterate over all key--value pairs of table t.

See next for the caveats of modifying the table during its traversal.

pcall (f, arg1, arg2, ...)

Calls function f with the given arguments in protected mode. That means that any error inside f is not propagated; instead, pcall catches the error and returns a status code. Its first result is the status code (a boolean), which is true if the call succeeds without errors. In such case, pcall also returns all results from the call, after this first result. In case of any error, pcall returns false plus the error message.

print (e1, e2, ...)

Receives any number of arguments, and prints their values in stdout, using the tostring function to convert them to strings. print is not intended for formatted output, but only as a quick way to show a value, typically for debugging. For formatted output, use string.format.

rawequal (v1, v2)

Checks whether v1 is equal to v2, without invoking any metamethod. Returns a boolean.

rawget (table, index)

Gets the real value of table[index], without invoking any metamethod. table must be a table and index any value different from nil.

rawset (table, index, value)

Sets the real value of table[index] to value, without invoking any metamethod. table must be a table, index any value different from nil, and value any Lua value.

select (index, ...)

If index is a number, returns all arguments after argument number index. Otherwise, index must be the string "#", and select returns the total number of extra arguments it received.

setfenv (f, table)

Sets the environment to be used by the given function. f may be a Lua function or a number that specifies the function at that stack level: Level 1 is the function calling setfenv. setfenv returns the given function.

As a special case, when f is 0 setfenv changes the environment of the running thread. In this case, setfenv returns no values.

setmetatable (table, metatable)

Sets the metatable for the given table. (You shall not change the metatable of other types from Lua, only from C.) If metatable is nil, removes the metatable of the given table. If the original metatable has a "__metatable" field, raises an error.

This function returns table.

tonumber (e [, base])

Tries to convert its argument to a number. If the argument is already a number or a string convertible to a number, then tonumber returns that number; otherwise, it returns nil.

An optional argument specifies the base to interpret the numeral. The base may be any integer between 2 and 36, inclusive. In bases above 10, the letter `A´ (in either upper or lower case) represents 10, `B´ represents 11, and so forth, with `Z´ representing 35. In base 10 (the default), the number may have a decimal part, as well as an optional exponent part (see 6.2). In other bases, only unsigned integers are accepted.

tostring (e)

Receives an argument of any type and converts it to a string in a reasonable format. For complete control of how numbers are converted, use string.format.

If the metatable of e has a "__tostring" field, then tostring calls the corresponding value with e as argument, and uses the result of the call as its result.

type (v)

Returns the type of its only argument, coded as a string. The possible results of this function are "nil" (a string, not the value nil), "number", "string", "boolean, "table", "function", "thread", and "userdata".

unpack (list [, i [, j]])

Returns the elements from the given table. This function is equivalent to

 return list[i], list[i+1], ..., list[j]

except that the above code may be written only for a fixed number of elements. By default, i is 1 and j is the length of the list, as defined by the length operator (see 6.6.6).

_VERSION

A global variable (not a function) that holds a string containing the current interpreter version. The current contents of this variable is "Lua 5.1".

xpcall (f, err)

This function is similar to pcall, except that you may set a new error handler.

xpcall calls function f in protected mode, using err as the error handler. Any error inside f is not propagated; instead, xpcall catches the error, calls the err function with the original error object, and returns a status code. Its first result is the status code (a boolean), which is true if the call succeeds without errors. In this case, xpcall also returns all results from the call, after this first result. In case of any error, xpcall returns false plus the result from err.

I.4.3 Coroutine manipulation

The operations related to coroutines comprise a sub-library of the basic library and come inside the table coroutine. See 6.12 for a general description of coroutines.

coroutine.create (f)

Creates a new coroutine, with body f. f must be a Lua function. Returns this new coroutine, an object with type "thread".

coroutine.resume (co [, val1, ..., valn])

Starts or continues the execution of coroutine co. The first time you resume a coroutine, it starts running its body. The values val1, ..., valn are passed as the arguments to the body function. If the coroutine has yielded, resume restarts it; the values val1, ..., valn are passed as the results from the yield.

If the coroutine runs without any errors, resume returns true plus any values passed to yield (if the coroutine yields) or any values returned by the body function (if the coroutine terminates). If there is any error, resume returns false plus the error message.

coroutine.running ()

Returns the running coroutine, or nil when called by the main thread.

coroutine.status (co)

Returns the status of coroutine co, as a string: "running", if the coroutine is running (that is, it called status); "suspended", if the coroutine is suspended in a call to yield, or if it has not started running yet; "normal" if the coroutine is active but not running (that is, it has resumed another coroutine); and "dead" if the coroutine has finished its body function, or if it has stopped with an error.

coroutine.wrap (f)

Creates a new coroutine, with body f. f must be a Lua function. Returns a function that resumes the coroutine each time it is called. Any arguments passed to the function behave as the extra arguments to resume. Returns the same values returned by resume, except the first boolean. In case of error, propagates the error.

coroutine.yield ([val1, ..., valn])

Suspends the execution of the calling coroutine. The coroutine may be running neither a C function, nor a metamethod, nor an iterator. Any arguments to yield are passed as extra results to resume.

I.4.4 Modules

The package library provides basic facilities for loading and building modules in Lua. It exports two of its functions directly in the global environment: require and module. Everything else is exported in a table package.

module (name [, ...])

Creates a module. If there is a table in package.loaded[name], that table is the module. Otherwise, if there is a global table t with the given name, that table is the module. Otherwise creates a new table t and sets it as the value of the global name and the value of package.loaded[name]. This function also initializes t._NAME with the given name, t._M with the module (t itself), and t._PACKAGE with the package name (the full module name minus last component; see below). Finally, module sets t as the new environment of the current function and the new value of package.loaded[name], so that require returns t.

If name is a compound name (that is, one with components separated by dots), module creates (or reuses, if they already exist) tables for each component. For instance, if name is a.b.c, then module stores the module table in field c of field b of global a.

This function may receive optional options after the module name, where each option is a function to be applied over the module.

require (modname)

Loads the given module. The function starts by looking into the table package.loaded to determine whether modname is already loaded. If it is, then require returns the value stored at package.loaded[modname]. Otherwise, it tries to find a loader for that module.

To find a loader, first require queries package.preload[modname]. If it has a value, that value (which should be a function) is the loader. Otherwise require searches for a Lua loader using the path stored in package.path. If that also fails, it searches for a C loader using the path stored in package.cpath. If that also fails, it tries an all-in-one loader (see below).

When loading a C library, require first uses a dynamic link facility to link the application with the library. Then it tries to find a C function inside that library to be used as the loader. The name of that C function is the string "luaopen_" concatenated with a copy of the module name where each dot is replaced by an underscore. Moreover, if the module name has a hyphen, its prefix up to (and including) the first hyphen is removed. For instance, if the module name is a.v1-b.c, the function name will be luaopen_b_c.

If require finds neither a Lua library nor a C library for a module, it calls the all-in-one loader. That loader searches the C path for a library for the root name of the given module. For instance, when requiring a.b.c, it will search for a C library for a. If found, it looks into it for an open function for the submodule; in our example, that would be luaopen_a_b_c. With that facility, a package may pack several C submodules into one single library, with each submodule keeping its original open function.

Once a loader is found, require calls the loader with a single argument, modname. If the loader returns any value, require assigns it to package.loaded[modname]. If the loader returns no value and has not assigned any value to package.loaded[modname], then require assigns true to that entry. In any case, require returns the final value of package.loaded[modname].

If there is any error loading or running the module, or if it cannot find any loader for that module, then require signals an error.

package.cpath

The path used by require to search for a C loader.

Lua initializes the C path package.cpath in the same way it initializes the Lua path package.path, using the environment variable LUA_CPATH (plus another default path defined in luaconf.h).

package.loaded

A table used by require to control which modules are already loaded. When you require a module modname and package.loaded[modname] is not false, require simply returns the value stored there.

package.loadlib (libname, funcname)

Dynamically links the host program with the C library libname. Inside this library, looks for a function funcname and returns this function as a C function. (So, funcname must follow the protocol (see lua_CFunction)).

This is a low-level function. It completely bypasses the package and module system. Unlike require, it does not perform any path searching and does not automatically adds extensions. libname must be the complete file name of the C library, including if necessary a path and extension. funcname must be the exact name exported by the C library (which may depend on the C compiler and linker used).

This function is not supported by ANSI C. As such, it is only available on some platforms (Windows, Linux, Mac OS X, Solaris, BSD, plus other Unix systems that support the dlfcn standard).

package.path

The path used by require to search for a Lua loader.

At start-up, Lua initializes this variable with the value of the environment variable LUA_PATH or with a default path defined in luaconf.h, if the environment variable is not defined. Any ";;" in the value of the environment variable is replaced by the default path.

A path is a sequence of templates separated by semicolons. For each template, require will change each interrogation mark in the template by filename, which is modname with each dot replaced by a "directory separator" (such as "/" in Unix); then it will try to load the resulting file name. So, for instance, if the Lua path is

 "./?.lua;./?.lc;/usr/local/?/init.lua"

the search for a Lua loader for module foo will try to load the files ./foo.lua, ./foo.lc, and /usr/local/foo/init.lua, in that order.

package.preload

A table to store loaders for specific modules (see require).

package.seeall (module)

Sets a metatable for module with its __index field referring to the global environment, so that this module inherits values from the global environment. To be used as an option to function module.

I.4.5 String manipulation

This library provides generic functions for string manipulation, such as finding and extracting substrings, and pattern matching. When indexing a string in Lua, the first character is at position 1 (not at 0, as in C). Indices are allowed to be negative and are interpreted as indexing backwards, from the end of the string. Thus, the last character is at position -1, and so on.

The string library provides all its functions inside the table string. It also sets a metatable for strings where the __index field points to the metatable itself. Therefore, you may use the string functions in object-oriented style. For instance, string.byte(s, i) may be written as s:byte(i).

string.byte (s [, i [, j]])

Returns the internal numerical codes of the characters s[i], s[i+1], ..., s[j]. The default value for i is 1; the default value for j is i.

Note that numerical codes are not necessarily portable across platforms.

string.char (i1, i2, ...)

Receives 0 or more integers. Returns a string with length equal to the number of arguments, in which each character has the internal numerical code equal to its corresponding argument.

Note that numerical codes are not necessarily portable across platforms.

string.dump (function)

Returns a string containing a binary representation of the given function, so that a later loadstring on that string returns a copy of the function. function must be a Lua function without upvalues.

string.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a match, then find returns the indices of s where this occurrence starts and ends; otherwise, it returns nil. A third, optional numerical argument init specifies where to start the search; its default value is 1 and may be negative. A value of true as a fourth, optional argument plain turns off the pattern matching facilities, so the function does a plain "find substring" operation, with no characters in pattern being considered "magic". Note that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also returned, after the two indices.

string.format (formatstring, e1, e2, ...)

Returns a formatted version of its variable number of arguments following the description given in its first argument (which must be a string). The format string follows the same rules as the printf family of standard C functions. The only differences are that the options/modifiers *, l, L, n, p, and h are not supported and that there is an extra option, q. The q option formats a string in a form suitable to be safely read back by the Lua interpreter: The string is written between double quotes, and all double quotes, newlines, embedded zeros, and backslashes in the string are correctly escaped when written. For instance, the call

 string.format('%q', 'a string with "quotes" and \n new line')

will produce the string:

 "a string with \"quotes\" and \
 new line"

The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument, whereas q and s expect a string.

This function does not accept string values containing embedded zeros.

string.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures from pattern over string s.

If pattern specifies no captures, then the whole match is produced in each call.

As an example, the following loop

 s = "hello world from Lua"

 for w in string.gmatch(s, "%a+") do

 print(w)

 end

will iterate over all the words from string s, printing one per line. The next example collects all pairs key=value from the given string into a table:

 t = {}

 s = "from=world, to=Lua"

 for k, v in string.gmatch(s, "(%w+)=(%w+)") do

 t[k] = v

 end

string.gsub (s, pattern, repl [, n])

Returns a copy of s in which all occurrences of the pattern have been replaced by a replacement string specified by repl, which may be a string, a table, or a function. gsub also returns, as its second value, the total number of substitutions made.

If repl is a string, then its value is used for replacement. The character % works as an escape character: Any sequence in repl of the form %n, with n between 1 and 9, stands for the value of the n-th captured substring (see below). The sequence %0 stands for the whole match. The sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as the key; if the pattern specifies no captures, then the whole match is used as the key.

If repl is a function, then this function is called every time a match occurs, with all captured substrings passed as arguments, in order; if the pattern specifies no captures, then the whole match is passed as a sole argument.

If the value returned by the table query or by the function call is a string or a number, then it is used as the replacement string; otherwise, if it is false or nil, then there is no replacement (that is, the original match is kept in the string).

The optional last parameter n limits the maximum number of substitutions to occur. For instance, when n is 1 only the first occurrence of pattern is replaced.

Here are some examples:

 x = string.gsub("hello world", "(%w+)", "%1 %1")

 --> x="hello hello world world"

 x = string.gsub("hello world", "%w+", "%0 %0", 1)

 --> x="hello hello world"

 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)",

 "%2 %1")

 --> x="world hello Lua from"

 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)",

 os.getenv)

 --> x="home = /home/roberto, user = roberto"

 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)

 return loadstring(s)()

 end)

 --> x="4+5 = 9"

 local t = {name="lua", version="5.1"}

 x = string.gsub("$name%-$version.tar.gz", "%$(%w+)", t)

 --> x="lua-5.1.tar.gz"

string.len (s)

Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are counted, so "a\000bc\000" has length 5.

string.lower (s)

Receives a string and returns a copy of that string with all uppercase letters changed to lowercase. All other characters are left unchanged. The definition of what an uppercase letter is depends on the current locale.

string.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds one, then match returns the captures from the pattern; otherwise it returns nil. If pattern specifies no captures, then the whole match is returned. A third, optional numerical argument init specifies where to start the search; its default value is 1 and may be negative.

string.rep (s, n)

Returns a string that is the concatenation of n copies of the string s.

string.reverse (s)

Returns a string that is the string s reversed.

string.sub (s, i [, j])

Returns the substring of s that starts at i and continues until j; i and j may be negative. If j is absent, then it is assumed to be equal to -1 (which is the same as the string length). In particular, the call string.sub(s,1,j) returns a prefix of s with length j, and string.sub(s, -i) returns a suffix of s with length i.

string.upper (s)

Receives a string and returns a copy of that string with all lowercase letters changed to uppercase. All other characters are left unchanged. The definition of what a lowercase letter is depends on the current locale.

Patterns

A character class is used to represent a set of characters. The following combinations are allowed in describing a character class:

· x (where x is not one of the magic characters ^$()%.[]*+-?) --- represents the character x itself.

· . --- (a dot) represents all characters.

· %a --- represents all letters.

· %c --- represents all control characters.

· %d --- represents all digits.

· %l --- represents all lowercase letters.

· %p --- represents all punctuation characters.

· %s --- represents all space characters.

· %u --- represents all uppercase letters.

· %w --- represents all alphanumeric characters.

· %x --- represents all hexadecimal digits.

· %z --- represents the character with representation 0.

· %x (where x is any non-alphanumeric character) --- represents the character x. This is the standard way to escape the magic characters. Any punctuation character (even the non magic) may be preceded by a `%´ when used to represent itself in a pattern.

· [set] --- represents the class which is the union of all characters in set. A range of characters may be specified by separating the end characters of the range with a `-´. All classes %x described above may also be used as components in set. All other characters in set represent themselves. For example, [%w_] (or [_%w]) represents all alphanumeric characters plus the underscore, [0-7] represents the octal digits, and [0-7%l%-] represents the octal digits plus the lowercase letters plus the `-´ character.

The interaction between ranges and classes is not defined. Therefore, patterns like [%a-z] or [a-%%] have no meaning.

· [^set] --- represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter represents the complement of the class. For instance, %S represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current locale. In particular, the class [a-z] cannot be equivalent to %l.

A pattern item may be

· a single character class, which matches any single character in the class;

· a single character class followed by `*´, which matches 0 or more repetitions of characters in the class. These repetition items will always match the longest possible sequence;

· a single character class followed by `+´, which matches 1 or more repetitions of characters in the class. These repetition items will always match the longest possible sequence;

· a single character class followed by `-´, which also matches 0 or more repetitions of characters in the class. Unlike `*´, these repetition items will always match the shortest possible sequence;

· a single character class followed by `?´, which matches 0 or 1 occurrence of a character in the class;

· %n, for n between 1 and 9; such item matches a substring equal to the n-th captured string (see below);

· %bxy, where x and y are two distinct characters; such item matches strings that start with x, end with y, and where the x and y are balanced. This means that, if one reads the string from left to right, counting +1 for an x and -1 for a y, the ending y is the first y where the count reaches 0. For instance, the item %b() matches expressions with balanced parentheses.

A pattern is a sequence of pattern items. A `^´ at the beginning of a pattern anchors the match at the beginning of the subject string. A `$´ at the end of a pattern anchors the match at the end of the subject string. At other positions, `^´ and `$´ have no special meaning and represent themselves.

A pattern may contain sub-patterns enclosed in parentheses; they describe captures. When a match succeeds, the substrings of the subject string that match captures are stored (captured) for future use. Captures are numbered according to their left parentheses. For instance, in the pattern "(a*(.)%w(%s*))", the part of the string matching "a*(.)%w(%s*)" is stored as the first capture (and therefore has number 1); the character matching "." is captured with number 2, and the part matching "%s*" has number 3.

As a special case, the empty capture () captures the current string position (a number). For instance, if we apply the pattern "()aa()" on the string "flaaap", there will be two captures: 3 and 5.

A pattern shall not contain embedded zeros. Use %z instead.

I.4.6 Table manipulation

This library provides generic functions for table manipulation. It provides all its functions inside the table table.

Most functions in the table library assume that the table represents an array or a list. For those functions, when we talk about the "length" of a table we mean the result of the length operator.

table.concat (table [, sep [, i [, j]]])

Returns table[i]..sep..table[i+1] ... sep..table[j]. The default value for sep is the empty string, the default for i is 1, and the default for j is the length of the table. If i is greater than j, returns the empty string.

table.insert (table, [pos,] value)

Inserts element value at position pos in table, shifting up other elements to open space, if necessary. The default value for pos is n+1, where n is the length of the table (see 6.6.6), so that a call table.insert(t,x) inserts x at the end of table t.

table.maxn (table)

Returns the largest positive numerical index of the given table, or zero if the table has no positive numerical indices. (To do its job this function does a linear traversal of the whole table.)

table.remove (table [, pos])

Removes from table the element at position pos, shifting down other elements to close the space, if necessary. Returns the value of the removed element. The default value for pos is n, where n is the length of the table, so that a call table.remove(t) removes the last element of table t.

table.sort (table [, comp])

Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the length of the table. If comp is given, then it must be a function that receives two table elements, and returns true when the first is less than the second (so that not comp(a[i+1],a[i]) will be true after the sort). If comp is not given, then the standard Lua operator < is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given order may have their relative positions changed by the sort.

I.4.7 Mathematical functions

This library is an interface to the standard C math library. It provides all its functions inside the table math. The library provides the following functions:

 math.abs
math.acos
math.asin
math.atan
math.atan2

 math.ceil
math.cos
math.cosh
math.deg
math.exp

 math.floor
math.fmod
math.frexp
math.ldexp
math.log

 math.log10
math.max
math.min
math.modf
math.pow

 math.rad
math.random
math.randomseed
math.sin

 math.sinh
math.sqrt
math.tan
math.tanh

plus a variable math.pi and a variable math.huge, with the value HUGE_VAL. Most of those functions are only interfaces to the corresponding functions in the C library. All trigonometric functions work in radians. The functions math.deg and math.rad convert between radians and degrees.

The function math.max returns the maximum value of its numeric arguments. Similarly, math.min computes the minimum. Both may be used with 1, 2, or more arguments.

The function math.modf corresponds to the modf C function. It returns two values: The integral part and the fractional part of its argument. The function math.frexp also returns 2 values: The normalized fraction and the exponent of its argument.

The functions math.random and math.randomseed are interfaces to the simple random generator functions rand and srand that are provided by ANSI C. (No guarantees can be given for their statistical properties.) When called without arguments, math.random returns a pseudo-random real number in the range [0,1). When called with a number n, math.random returns a pseudo-random integer in the range [1,n]. When called with two arguments, l and u, math.random returns a pseudo-random integer in the range [l,u]. The math.randomseed function sets a "seed" for the pseudo-random generator: Equal seeds produce equal sequences of numbers.

I.4.8 Input and output facilities

The I/O library provides two different styles for file manipulation. The first one uses implicit file descriptors; that is, there are operations to set a default input file and a default output file, and all input/output operations are over those default files. The second style uses explicit file descriptors.

When using implicit file descriptors, all operations are supplied by table io. When using explicit file descriptors, the operation io.open returns a file descriptor and then all operations are supplied as methods of the file descriptor.

The table io also provides three predefined file descriptors with their usual meanings from C: io.stdin, io.stdout, and io.stderr.

Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a second result) and some value different from nil on success.

io.close ([file])

Equivalent to file:close(). Without a file, closes the default output file.

io.flush ()

Equivalent to file:flush over the default output file.

io.input ([file])

When called with a file name, it opens the named file (in text mode), and sets its handle as the default input file. When called with a file handle, it simply sets that file handle as the default input file. When called without parameters, it returns the current default input file.

In case of errors this function raises the error, instead of returning an error code.

io.lines ([filename])

Opens the given file name in read mode and returns an iterator function that, each time it is called, returns a new line from the file. Therefore, the construction

 for line in io.lines(filename) do ... end

will iterate over all lines of the file. When the iterator function detects the end of file, it returns nil (to finish the loop) and automatically closes the file.

The call io.lines() (without a file name) is equivalent to io.input():lines(); that is, it iterates over the lines of the default input file. In that case it does not close the file when the loop ends.

io.open (filename [, mode])

This function opens a file, in the mode specified in the string mode. It returns a new file handle, or, in case of errors, nil plus an error message.

The mode string may be any of the following:

· "r" --- read mode (the default);

· "w" --- write mode;

· "a" --- append mode;

· "r+" --- update mode, all previous data is preserved;

· "w+" --- update mode, all previous data is erased;

· "a+" --- append update mode, previous data is preserved, writing is only allowed at the end of file.

The mode string may also have a `b´ at the end, which is needed in some systems to open the file in binary mode. This string is exactly what is used in the standard C function fopen.

io.output ([file])

Similar to io.input, but operates over the default output file.

io.popen ([prog [, mode]])

Starts program prog in a separated process and returns a file handle that you may use to read data from that program (if mode is "r", the default) or to write data to that program (if mode is "w").

This function is system dependent and is not available on all platforms.

io.read (format1, ...)

Equivalent to io.input():read.

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in update mode and it is automatically removed when the program ends.

io.type (obj)

Checks whether obj is a valid file handle. Returns the string "file" if obj is an open file handle, "closed file" if obj is a closed file handle, and nil if obj is not a file handle.

io.write (value1, ...)

Equivalent to io.output():write.

file:close ()

Closes file. Note that files are automatically closed when their handles are garbage collected, but that takes an unpredictable amount of time to happen.

file:flush ()

Saves any written data to file.

file:lines ()

Returns an iterator function that, each time it is called, returns a new line from the file. Therefore, the construction

 for line in file:lines() do ... end

will iterate over all lines of the file. (Unlike io.lines, this function does not close the file when the loop ends.)

file:read (format1, ...)

Reads the file file, according to the given formats, which specify what to read. For each format, the function returns a string (or a number) with the characters read, or nil if it cannot read data with the specified format. When called without formats, it uses a default format that reads the entire next line (see below).

The available formats are

· "*n" reads a number; this is the only format that returns a number instead of a string.

· "*a" reads the whole file, starting at the current position. On end of file, it returns the empty string.

· "*l" reads the next line (skipping the end of line), returning nil on end of file. This is the default format.

· number reads a string with up to that number of characters, returning nil on end of file. If number is zero, it reads nothing and returns an empty string, or nil on end of file.

file:seek ([whence] [, offset])

Sets and gets the file position, measured from the beginning of the file, to the position given by offset plus a base specified by the string whence, as follows:

· "set" --- base is position 0 (beginning of the file);

· "cur" --- base is current position;

· "end" --- base is end of file;

In case of success, function seek returns the final file position, measured in bytes from the beginning of the file. If this function fails, it returns nil, plus a string describing the error.

The default value for whence is "cur", and for offset is 0. Therefore, the call file:seek() returns the current file position, without changing it; the call file:seek("set") sets the position to the beginning of the file (and returns 0); and the call file:seek("end") sets the position to the end of the file, and returns its size.

file:setvbuf (mode [, size])

Sets the buffering mode for an output file. There are three available modes:

· "no" --- no buffering; the result of any output operation appears immediately.

· "full" --- full buffering; output operation is performed only when the buffer is full (or when you explicitly flush the file (see 9.8)).

· "line" --- line buffering; output is buffered until a newline is output or there is any input from some special files (such as a terminal device).

For the last two cases, sizes specifies the size of the buffer, in bytes. The default is an appropriate size.

file:write (value1, ...)

Writes the value of each of its arguments to the file. The arguments must be strings or numbers. To write other values, use tostring or string.format before write.

I.4.9 Operating system facilities

This library is implemented through table os.

os.clock ()

Returns an approximation of the amount in seconds of CPU time used by the program.

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the given string format.

If the time argument is present, this is the time to be formatted (see the os.time function for a description of this value). Otherwise, date formats the current time.

If format starts with `!´, then the date is formatted in Coordinated Universal Time. After that optional character, if format is *t, then date returns a table with the following fields: year (four digits), month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday (weekday, Sunday is 1), yday (day of the year), and isdst (daylight saving flag, a boolean).

If format is not *t, then date returns the date as a string, formatted according to the same rules as the C function strftime.

When called without arguments, date returns a reasonable date and time representation that depends on the host system and on the current locale (that is, os.date() is equivalent to os.date("%c")).

os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and some other systems, this value is exactly t2-t1.

os.execute ([command])

This function is equivalent to the C function system. It passes command to be executed by an operating system shell. It returns a status code, which is system-dependent. If command is absent, then it returns nonzero if a shell is available and zero otherwise.

os.exit ([code])

Calls the C function exit, with an optional code, to terminate the host program. The default value for code is the success code.

os.getenv (varname)

Returns the value of the process environment variable varname, or nil if the variable is not defined.

os.remove (filename)

Deletes the file or directory with the given name. Directories must be empty to be removed. If this function fails, it returns nil, plus a string describing the error.

os.rename (oldname, newname)

Renames file or directory named oldname to newname. If this function fails, it returns nil, plus a string describing the error.

os.setlocale (locale [, category])

Sets the current locale of the program. locale is a string specifying a locale; category is an optional string describing which category to change: "all", "collate", "ctype", "monetary", "numeric", or "time"; the default category is "all". The function returns the name of the new locale, or nil if the request cannot be honored.

os.time ([table])

Returns the current time when called without arguments, or a time representing the date and time specified by the given table. This table must have fields year, month, and day, and may have fields hour, min, sec, and isdst (for a description of these fields, see the os.date function).

The returned value is a number, whose meaning depends on your system. In POSIX, Windows, and some other systems, this number counts the number of seconds since some given start time (the "epoch"). In other systems, the meaning is not specified, and the number returned by time may be used only as an argument to date and difftime.

os.tmpname ()

Returns a string with a file name that may be used for a temporary file. The file must be explicitly opened before its use and explicitly removed when no longer needed.

I.4.10 The debug library

This library provides the functionality of the debug interface to Lua programs. You should exert care when using this library. The functions provided here should be used exclusively for debugging and similar tasks, such as profiling. Please resist the temptation to use them as a usual programming tool: They can be very slow. Moreover, several of its functions violate some assumptions about Lua code (e.g., that variables local to a function cannot be accessed from outside or that userdata metatables cannot be changed by Lua code) and therefore can compromise otherwise secure code.

All functions in this library are provided inside the debug table.

debug.debug ()

Enters an interactive mode with the user, running each string that the user enters. Using simple commands and other debug facilities, the user may inspect global and local variables, change their values, evaluate expressions, and so on. A line containing only the word cont finishes this function, so that the caller continues its execution.

Note that commands for debug.debug are not lexically nested within any function, and so have no direct access to local variables.

debug.getfenv (o)

Returns the environment of object o.

debug.gethook ()

Returns the current hook settings, as three values: the current hook function, the current hook mask, and the current hook count (as set by the debug.sethook function).

debug.getinfo (function [, what])

Returns a table with information about a function. You may give the function directly, or you may give a number as the value of function, which means the function running at level function of the call stack: Level 0 is the current function (getinfo itself); level 1 is the function that called getinfo; and so on. If function is a number larger than the number of active functions, then getinfo returns nil.

The returned table contains all the fields returned by lua_getinfo, with the string what describing which fields to fill in. The default for what is to get all information available. If present, the option `f´ adds a field named func with the function itself.

For instance, the expression debug.getinfo(1,"n").name returns a name of the current function, if a reasonable name can be found, and debug.getinfo(print) returns a table with all available information about the print function.

debug.getlocal (level, local)

This function returns the name and the value of the local variable with index local of the function at level level of the stack. (The first parameter or local variable has index 1, and so on, until the last active local variable.) The function returns nil if there is no local variable with the given index, and raises an error when called with a level out of range. (You may call debug.getinfo to check whether the level is valid.)

Variable names starting with `(´ (open parentheses) represent internal variables (loop control variables, temporaries, and C function locals).

debug.getmetatable (object)

Returns the metatable of the given object or nil if it does not have a metatable.

debug.getregistry ()

Returns the registry table (see 7.6).

debug.getupvalue (func, up)

This function returns the name and the value of the upvalue with index up of the function func. The function returns nil if there is no upvalue with the given index.

debug.setfenv (object, table)

Sets the environment of the given object to the given table.

debug.sethook (hook, mask [, count])

Sets the given function as a hook. The string mask and the number count describe when the hook will be called. The string mask may have the following characters, with the given meaning:

· "c" --- The hook is called every time Lua calls a function;

· "r" --- The hook is called every time Lua returns from a function;

· "l" --- The hook is called every time Lua enters a new line of code.

With a count different from zero, the hook is called after every count instructions.

When called without arguments, debug.sethook turns off the hook.

When the hook is called, its first parameter is a string describing the event that has triggered its call: "call", "return" (or "tail return"), "line", and "count". For line events, the hook also gets the new line number as its second parameter. Inside a hook, you may call getinfo with level 2 to get more information about the running function (level 0 is the getinfo function, and level 1 is the hook function), unless the event is "tail return". In this case, Lua is only simulating the return, and a call to getinfo will return invalid data.

debug.setlocal (level, local, value)

This function assigns the value value to the local variable with index local of the function at level level of the stack. The function returns nil if there is no local variable with the given index, and raises an error when called with a level out of range. (You may call getinfo to check whether the level is valid.) Otherwise, it returns the name of the local variable.

debug.setmetatable (object, table)

Sets the metatable for the given object to the given table (which may be nil).

debug.setupvalue (func, up, value)

This function assigns the value value to the upvalue with index up of the function func. The function returns nil if there is no upvalue with the given index. Otherwise, it returns the name of the upvalue.

debug.traceback ([message])

Returns a string with a traceback of the call stack. An optional message string is appended at the beginning of the traceback. This function is typically used with xpcall to produce better error messages.

I.5 Lua Stand-alone

Although Lua has been designed as an extension language, to be embedded in a host C program, it is also frequently used as a stand-alone language. An interpreter for Lua as a stand-alone language, called simply lua, is provided with the standard distribution. The stand-alone interpreter includes all standard libraries, including the debug library. Its usage is:

 lua [options] [script [args]]

The options are:

· -e stat executes string stat;

· -l mod "requires" mod;

· -i enters interactive mode after running script;

· -v prints version information;

· -- stops handling options;

· - executes stdin as a file and stops handling options.

After handling its options, lua runs the given script, passing to it the given args as string arguments. When called without arguments, lua behaves as lua -v -i when the standard input (stdin) is a terminal, and as lua - otherwise.

Before running any argument, the interpreter checks for an environment variable LUA_INIT. If its format is @filename, then lua executes the file. Otherwise, lua executes the string itself.

All options are handled in order, except -i. For instance, an invocation like

 $ lua -e'a=1' -e 'print(a)' script.lua

will first set a to 1, then print the value of a (which is `1´), and finally run the file script.lua with no arguments. (Here $ is the shell prompt. Your prompt may be different.)

Before starting to run the script, lua collects all arguments in the command line in a global table called arg. The script name is stored at index 0, the first argument after the script name goes to index 1, and so on. Any arguments before the script name (that is, the interpreter name plus the options) go to negative indices. For instance, in the call

 $ lua -la b.lua t1 t2

the interpreter first runs the file a.lua, then creates a table

 arg = { [-2] = "lua", [-1] = "-la", [0] = "b.lua", [1] = "t1", [2] = "t2" }

and finally runs the file b.lua. The script is called with arg[1], arg[2], ... as arguments; it may also access those arguments with the vararg expression `...´.

In interactive mode, if you write an incomplete statement, the interpreter waits for its completion by issuing a different prompt.

If the global variable _PROMPT contains a string, then its value is used as the prompt. Similarly, if the global variable _PROMPT2 contains a string, its value is used as the secondary prompt (issued during incomplete statements). Therefore, both prompts may be changed directly on the command line. For instance,

 $ lua -e"_PROMPT='myprompt> '" -i

(the outer pair of quotes is for the shell, the inner pair is for Lua), or in any Lua programs by assigning to _PROMPT. Note the use of -i to enter interactive mode; otherwise, the program would just end silently right after the assignment to _PROMPT.

To allow the use of Lua as a script interpreter in Unix systems, the stand-alone interpreter skips the first line of a chunk if it starts with #. Therefore, Lua scripts may be made into executable programs by using chmod +x and the #! form, as in

 #!/usr/local/bin/lua

(Of course, the location of the Lua interpreter can be different in your machine. If lua is in your PATH, then

 #!/usr/bin/env lua

is a more portable solution.)

I.6 Incompatibilities with the version 5.0

Note: Here we list the incompatibilities that can be found when moving a program from Lua 5.0 to Lua 5.1. You can avoid most of the incompatibilities compiling Lua with appropriate options (see file luaconf.h). However, all those compatibility options will be removed in the next version of Lua.

I.6.1 Changes in the language

These are the changes in the language introduced by Lua 5.1:

· The vararg system changed from the pseudo-argument arg with a table with the extra arguments to the vararg expression. (Option LUA_COMPAT_VARARG in luaconf.h.)

· There was a subtle change in the scope of the implicit variables of the for statement and for the repeat statement.

· The long string/long comment syntax ([[...]]) does not allow nesting. You may use the new syntax ([=[...]=]) in those cases. (Option LUA_COMPAT_LSTR in luaconf.h.)

I.6.2 Changes in the libraries

These are the changes in the libraries introduced by Lua 5.1:

· Function string.gfind was renamed string.gmatch. (Option LUA_COMPAT_GFIND)

· When string.gsub is called with a function as its third argument, whenever that function returns nil or false the replacement string is the whole match, instead of the empty string.

· Function table.setn was deprecated. Function table.getn corresponds to the new length operator (#); use the operator instead of the function. (Option LUA_COMPAT_GETN)

· Function loadlib was renamed package.loadlib. (Option LUA_COMPAT_LOADLIB)

· Function math.mod was renamed math.fmod. (Option LUA_COMPAT_MOD)

· There were substantial changes in function require due to the new module system. However, the new behavior is mostly compatible with the old, but require gets the path from package.path instead of from LUA_PATH.

· Function collectgarbage has different arguments. Function gcinfo is deprecated; use collectgarbage("count") instead.

I.6.3 Changes in the API

These are the changes in the C API introduced by Lua 5.1:

· The luaopen_* functions (to open libraries) shall not be called directly, like a regular C function. They must be called through Lua, like a Lua function.

· Function lua_open was replaced by lua_newstate to allow the user to set a memory allocation function. You may use luaL_newstate from the standard library to create a state with a standard allocation function (based on realloc).

· Functions luaL_getn and luaL_setn (from the auxiliary library) are deprecated. Use lua_objlen instead of luaL_getn and nothing instead of luaL_setn.

· Function luaL_openlib was replaced by luaL_register.

I.7 The complete syntax of Lua

Here is the complete syntax of Lua in extended BNF. It does not describe operator priorities or some syntactical restrictions, such as return and break statements may only appear as the last statement of a block.

 chunk ::= {stat [`;´]} [laststat[`;´]]

 block ::= chunk

 stat ::= varlist1 `=´ explist1 |

functioncall |

do block end |

while exp do block end |

repeat block until exp |

if exp then block {elseif exp then block}[else block] end |

for Name `=´ exp `,´ exp [`,´ exp] do block end |

for namelist in explist1 do block end |

function funcname funcbody |

local function Name funcbody |

local namelist [`=´ explist1]

 laststat ::= return [explist1] | break

 funcname ::= Name {`.´ Name} [`:´ Name]

 varlist1 ::= var {`,´ var}

 var ::= Name | prefixexp `[´ exp `]´ | prefixexp `.´ Name

 namelist ::= Name {`,´ Name}

 explist1 ::= {exp `,´} exp

 exp ::= nil | false | true | Number | String | `...´ |

 function | prefixexp | tableconstructor |

 exp binop | exp | unop exp

 prefixexp ::= var | functioncall | `(´ exp `)´

 functioncall ::= prefixexp args | prefixexp `:´ Name args

 args ::= `(´ [explist1] `)´ | tableconstructor | String

 function ::= function funcbody

 funcbody ::= `(´ [parlist1] `)´ block end

 parlist1 ::= namelist [`,´ `...´] | `...´

 tableconstructor ::= `{´ [fieldlist] `}´

 fieldlist ::= field {fieldsep field} [fieldsep]

 field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp

 fieldsep ::= `,´ | `;´

 binop ::= `+´ | `-´ | `*´ | `/´ | `^´ | `%´ | `..´ |

 `<´ | `<=´ | `>´ | `>=´ | `==´ | `~=´ |

 and | or

 unop ::= `-´ | not | `#´

--------------------End of Proposed Text--------------------

	Contact:
	Marcelo Moreno
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
Brazil
	Tel: +55 21 3527 1500 ext 3503
Email: moreno@inf.puc-rio.br

	Contact:
	Roberto Mitsuake Hirayama

Agência Nacional de Telecomunicações (Anatel)

Brazil
	Tel: +55 61 2312 2755

Email: hirayama@anatel.gov.br

