ITU Telecommunication Standardization Sector					Document APC-1830

Study Group 16

Q.12-14/16 Rapporteur Meeting

Osaka, 15-19 May 2000





SOURCE*:  Lucent Technologies



TITLE: Architectures for H.323 Robustness



PURPOSE:  proposal

_________________________________________________



Abstract

The robustness group is considering two basic architectures for recovering from failed H.323 elements. Only one will eventually be recommended.  This document will briefly describe both, with more details on one.  The other is described in more detail in a companion document from RadVision.



(I will add references to relevant documents from previous meetings.)



Overview of the Two Architectures

The problem we are trying to solve is to recover from a failed element.  The goal is to preserve as many active calls as possible.  As a minimum we wish to preserve all calls in a “stable” state.  Calls not yet fully connected or in the process of tear-down may be lost.  It is also a goal to preserve most relevant billing information, such as call start time, stop time, etc., even if maintained in the failed element (e.g., routing gatekeeper).



It is assumed that the failed element has one or more designated backup elements.  Two basic problems must be solved to recover signaling for active calls

Redirecting signaling to the backup element.

The backup element must recover call state information that had been in the failed element.



The two architectures are primarily distinguished by the way in which the backup element recovers state information about the active calls.

State Recovery from Neighbors

The first architecture is similar to one given in Plenary TD-xx (Geneva Feb 2000) by RadVision (get proper reference).  Each element is aware of the signaling transport addresses for backup elements for each upstream and downstream signaling neighbor.  When elements become aware of the failure of their upstream or downstream signaling neighbor  they attempt to connect to one of the backup elements.  The backup element recovers call state from its signaling neighbor using Status and StatusInquiry messages (enhanced with additional information elements).  More details of this method are given in the companion document submitted to this meeting by RadVision. (do we know the APC-#?)

State Recovery from a Shared Repository

The second architecture depends on a fault-tolerant pseudo-element.  This may be implemented by

Using a fault-tolerant platform/OS.

A pool of non-fault-tolerant elements that share call state information through shared-memory, shared-disks, or through messages.  The mechanism for sharing is not specified in the recommendation.

The real elements in this fault-tolerant pseudo-element must share sufficient state information with its peer elements to allow recovery of the call without any assistance from its signaling neighbors.  The recommendation will define the minimum information elements that must be shared.  We note that option 2, will require that all elements in the pool constituting the pseudo-element must be from the same vendor since the sharing mechanism is not standard.  The group would suggest one or two possible solutions and will consider recommending a standard sharing mechanism in H.323 versions beyond version 4.



More details of this architecture will be given below.



Comparison

Each of these two architectures have advantages, which makes the choice less than obvious.  Some of the issues will  be listed below.



The Recovery from Neighbor approach:

Allows simpler elements

Add no overhead before a failure

But:

Requires more changes to H.323 messages

Make recovery somewhat slower (due to the Status and StatusInquiry messages)



The Shared Repository approach:

Hides most of the recovery process from H.323 and so requires fewer changes to existing messages

Makes recovery faster

Allows future use of state-maintenance protocols that might be implemented below the H.323 application layer, such as one suggested based on DDP.

But

Adds significant overhead to all signaling (before failure).

Requires more complex elements or pseudo-elements.



The Shared Repository Architecture

This method depends on a fault-tolerant element or pseudo-element and (if the backup element requires a different signaling address) a mechanism to re-establish call signaling to the backup.  There are several ways this could be done.  We do not feel that a fault-tolerant mechanism could be standardized in time for H.323v4 but we will suggest some solutions.  We may recommend standardizing the solution in a future version of H.323.  There are some emerging IETF protocols that may help solve this problem but these are not yet in a state that could be referenced by H.323v4.



Transport Address

All of these solutions (with the possible exception of some fault-tolerant platform solutions must deal with recovery of the signaling channel using a backup transport address. These must be exchanged when call signaling is established, using new IEs in Setup and Connect (and possibly Alerting and Call Proceeding).  An element that loses a call signaling channel with a signaling neighbor, would try to reestablish the channel using one of the backup transport addresses.  In many cases, it would not be aware of the channel failure until it had a message to send.  If it did become aware, prior to having any message to send, it would wait a random period of time before attempting to reestablish the channel to avoid the storm of attempts for the many active calls.  The re-established call signaling channel will assume the state of the previous – not behave as a new channel (it will not begin with Setup).  See further detail below for ensuring synchronization of state between signaling neighbors.



An alternative is to use SCTP for transport rather than TCP.  SCTP channels are associated with a list of alternate transport addresses that can be used as needed to maintain the channel with no intervention by the application layer.  Note that more information about using SCTP and DDP (discussed later) is given in a companion document, APC-1772, submitted by Motorola.



Fault-tolerant Platform

One solution is to implement the robust element on a fault-tolerant platform that uses hardware and OS support.  Such a solution would make state recovery completely transparent to H.323.  If the platform also maintains a constant transport address then the signaling channel will not fail and no application level procedures are needed. If the transport address changes, then the mechanism of the previous section would be needed.  This solution is similar to that presented in TD-(get doc ref) (Geneva Feb 2000) submitted by RadVision.

 Fault-tolerant Cluster

Another solution is to establish a cluster (two or more) of non-fault-tolerant elements, that collectively behave as a fault-tolerant pseudo-element.  The elements of the cluster would arrange to share specified call state information sufficient to allow a peer to take over in the event of the failure of the active element.  Solutions can include:



active/spare (“1+1”)

single spare shared by several active elements (spare sharing state information with each active element that it might substitute for) (“N+1”).

And others configurations



Although state information is shared, allowing the cluster to appear like a fault-tolerant platform, it will not be able to maintain a constant call signaling transport address and so must use one of the mechanisms of 3.1 to reestablish the call signaling channel.



One key problem for the cluster model is how to share state. State information must be synchronized at key times in the call, to which the system can safely fall back.  We will call these times checkpoints.  The recommendation would specify the checkpoints and the data items that must be shared. We do not intend to suggest a standard solution for sharing in this version of the recommendation but here we will discuss several to illustrate the practicality of this model.

Shared-Memory

If members of the cluster are physically located in the same cabinet, they may be able to use a shared memory device.  This is similar to many fault-tolerant platforms, but might simply write to shared memory at each checkpoint rather than running a fault-tolerant OS.

Shared-Disk

If the members of the cluster are physically located near each other, they can use a shared-disk and write state information at each checkpoint.

Message Passing

The active element can send a message updating the shared state to each of the other members of the cluster at each checkpoint.  This implements a distributed shared memory sometimes referred to as a bulletin board. The messages can be sent using distinct UDP messages, multicast messages, persistent TCP links or fault-tolerant message passing protocol such as DDP (which supports a send-to-group multicast mechanism not requiring multicast IP).  This is discussed in more detail and with some suggested checkpoints in APC-1772.

Synchronizing State

When a backup element takes over for a failed peer and receives a message over a new connection, it would retrieve the call state (using the callId as key).  This will allow it to continue supporting the call, including routing signaling, maintaining billing information, etc.



There are a few cases where signaling messages even for “stable” calls might have propagated only part way through the system when one element fails (e.g., DTMF carriage in UserInputIndication, changes in multipoint connections, etc.).  This will require that we add end-to-end acknowledgement for certain messages.  We intend to support this by adding endToEndAcknowledgeCapability to Setup and Connect and requestEndToEndAck into the required messages.  Acknowledgement would use Facility or an appropriate H.245 message. 

This mechanism would be available independently of the full robustness capability but would be required by robustness.

APC-1830		Page � PAGE �3� of 4





*contact: Terry Anderson, Lucent Technologies, +1 908 582 7013, tla@lucent.com  








