
[image: image1.wmf]
	
	

	ITU Telecommunication Standardization Sector

STUDY PERIOD 1997-2000

Study Group 16

Q.12-14/16 Rapporteurs Meeting

Japan, 15-19 May 2000
	APC-1835

May 10, 2000

Original: English

	
	

Question:

SOURCE*:
Trillium Digital Systems

TITLE:
Adding Mechanisms in H.323 to Ensure Synchronization of Call States between Endpoints for Robustness

Purpose:
Discussion

Date:
May 10, 2000
CONTACT: Mahesh Bhan (mbhan@trillium.com)

 Archana Nehru (archie@trillium.com)

 Tim Chen (tim@trillium.com)

Abstract

There are some H.323 messages that are strictly one way and the receiver does not send any responses to the sender for such messages. A problem arises when an intermediate point (for example, a Gatekeeper) fails because this can lead to loss of one-way messages. Since the sender is not expecting any response from such messages, it cannot detect that the message has been lost. Therefore, the sender cannot initiate any recovery action. This can lead to a mismatch between the call states on the sender’s side as well as the receiver’s side. Such a mismatch in call-state synchronization can lead to hanging resources and/or release of calls in the network.

Throughout this document, we list some "one-way" messages that can cause call states to become unsynchronized when they are lost. We also propose mechanisms by which an H.323 entity can receive acknowledgements for such unacknowledged messages and enable the H.323 entity to detect any lost messages. By initiating recovery procedures, problems of call state mismatch can be avoided and the robustness of a H.323 calls are ensured.

References

Introduction

The following section details the problems and solutions.

Problem

The figure below shows that for messages with no H.323 application level response, a protocol message could get lost even though we may have transport level acknowledgement at each link. A “one way” message is sent from EP1 that currently has no response in H.323. An example is a communication mode command from MC to request an endpoint to switch from unicast to multicast in a conference. The message is relayed to GK2 and a transport layer acknowledgement has been sent to GK1. However, GK2 crashed before it could process and forward the message to EP1. As a result, even though a backup to GK2 may take over, the message would not be retransmitted and EP1 would assume that EP2 has received the message.

Figure 1: A Message Loss Scenario

Loss of “one way” messages can lead to a mismatch in the call states of the two endpoints involved in a call. The following table lists a few of such messages. This list is not exhaustive because of the limited time we had to study this problem. However, it illustrates some of the problems that result from losing these messages.

	 Message Lost
	Function
	Problem Caused

	RELCOMPLETE
	Releases a call
	1. EP2 (the end that did not receive the RELCOMP) sends data to EP1 (the end that sent the RELCOMP) oblivious of the fact that EP1 has already cleared the call.

2. EP2 continues to keep the context and hangs on to the resources corresponding to the call indefinitely.

Note: The GKs in between EP2 and EP1 may also maintain the context of the call.

	Communication Mode Command
	Directs an endpoint to change modes or to transmit to a new address. It may cause a switch between a centralized and decentralized conference and, therefore, involve closing all existing logical channels and opening new ones.
	In a conference, it may mean that some Terminals (that received the command) behave differently than the Terminals that did not receive the command.

This mismatch can lead to some problems and can also mean data loss or lead to releasing some calls.

	Multipoint Mode Command
	Commands that a Terminal receiving this message shall comply with all requestMode commands issued by the MCU
	If the Multipoint Mode command were lost, it would mean that certain Terminals might behave incorrectly when receiving a requestMode.

	User Input Indication
	Used for user input messages
	The effect can be seen clearly in a transaction based service, like a bank or an automated system, where incoming calls must be routed based on the “extension number” received from the remote end.

For example, a user can ask to be transferred to extension “2122” and instead is transferred to extension “21” which may also be valid. Or a customer in a bank might want to transfer a sum of “12000” while as the number received at the processing end is only “120”.

Suggested Solution

We propose to solve this problem by introducing end-to-end acknowledgement mechanisms in H.323 for certain H.245 commands and indications so that the endpoints can detect such loss of messages and recover by using robustness mechanisms.

To achieve this, we need:

a) Acknowledgement messages for “one-way” messages (like RELEASE COMPLETE/H.245 commands/indications) that currently do not have an acknowledgement.

There are several types of H.225 and H.245 messages that do not have an ACK. In the H.225, the RELEASE COMPLETE message does not have an ACK. Therefore, if a RELEASE COMPLETE message becomes lost, there can be hung resources throughout the network. To avoid this, we propose that if an H.323 entity supports robustness, it should send a Q.931 RELEASE message instead of a RELEASE COMPLETE message. When a robust node receives a RELEASE message it responds back by sending a RELEASE COMPLETE message. The mechanisms/timers used for exchanging RELEASE and RELEASE COMPLETE message are as mentioned in Q.931.

Note : If the peer is not robust, then the robust entity will only send a RELEASE COMPLETE without expecting any response.

For unacknowledged messages in H.245 such as those in the class of commands and indications, we propose the use of a new Confirm message. This Confirm message is sent by the receiver to acknowledge that it has acted on the command/indication from the sender. Correspondingly, a sequence number field is added to all such command and indication messages. This sequence number can be used to match the request to the responses.

b) A mechanism by which a robust H.323 node can determine whether it can exchange robustness procedures with its peer.

This is achieved by adding a new supportRobustness field to the SETUP and CONNECT message. A robust H.323 node indicates its ability to support robustness to the outgoing side peer by sending a SETUP with a supportRobustness field. It indicates its ability to support robustness to its incoming side peer by including the supportRobustness field in the CONNECT message.

Note : An actual network can be a combination of robust and non-robust nodes. Therefore, we describe the mechanisms for doing message acknowledgement under each scenario.
The section below details the procedures followed for possible combinations of robust and non-robust nodes (NR).

Case 1: When both the endpoints and Gatekeepers support robustness. (See Figure 2).

Figure 2: Robustness Acknowledgement Procedure Example (all nodes robust)

In this scenario, all the entities involved in the call support robustness. Assume EP-1 wants to make a call to EP-2. When EP-1 sends the SETUP message it sets supportRobustness fields appropriately to inform the EP-2 that it supports robustness. As all the intermediate nodes support robustness, each node forwards the SETUP message with supportRobustness set. When the SETUP message reaches EP-2, it responds by sending a CONNECT message with supportRobustness set. Each node again forwards the CONNECT message with supportRobustness set. EP-1 is now aware that EP-2 can participate in robustness procedures.

When EP-1 wants to release the call, it sends out a RELEASE message, starts a timer, and waits for a RELEASE COMPLETE message. Any failure at an intermediate node (like GK-1/GK-2) that results in the loss of the message can easily be detected by EP-1 because it expects a RELEASE COMPLETE from EP-2. When a RELEASE COMPLETE message is received, the call is cleared.

For unacknowledged H.245 command/indications (like the Communication Mode Command or userInputIndication), whenever EP-1 sends these messages towards EP-2, it expects a response in the form of a confirm packet. When EP-2 receives this message, it sends back an acknowledgement in the form of a confirm packet. If the EP-1 does not receive a confirm within a specified time, it will resend the original packet.

Case 2: When one of the endpoints does not support robustness, but both GKs do. (see Figure 3)

Figure 3: GK2 Proxying for Robust Acknowledgement Procedure for EP2 (EP2 non robust)

This scenario arises when every entity in the network supports robustness except the called endpoint. Assume EP-1 wants to make a call to EP-2. When EP-1 sends the SETUP message it sets supportRobustness fields appropriately to inform EP-2 that it supports robustness. As all the intermediates nodes support robustness, each node forwards the SETUP message with supportRobustness field present. When the SETUP message reaches EP-2, it responds back by sending a CONNECT message without any supportRobustness field. When the message reaches GK-2, it has two choices. It can either forward the CONNECT message transparently without supportRobustness or modify it to include the supportRobustness field. The latter approach is taken if the GK-2 is ready to participate in the robustness procedures on behalf of the EP2. The advantage of this approach is that any loss of message at any node from EP-1 up to GK-2 is recoverable. Based on the action taken by the GK-2 on the CONNECT message, EP-1 thinks of EP-2 as robust or non-robust and behaves accordingly.

If EP-1 thinks of EP-2 as a robust node, then it sends out a RELEASE message to release a call and waits for a RELEASE COMPLETE message. When GK-2 receives the RELEASE message, it generates a RELEASE COMPLETE to the EP-1 and forwards a RELEASE COMPLETE message to EP-2. When EP-1 receives the RELEASE COMPLETE message, it clears the call.

The GK-2 handles the H.245 messages in a similar manner.

Case 3: When one of the GKs does not support the robustness, but the other GK and the endpoints do. (See Figure 4)

Figure 3: GK1 Proxying for Robust Acknowledgement Procedure (GK1 non robust)
This scenario arises when EP-1, GK-1, and EP-2 support robustness, but GK-2 does not. Assume EP-1 wants to make a call to EP-2. When EP-1 sends the SETUP message, it sets supportRobustness fields appropriately to inform the EP-2 that it supports robustness. Since GK-2 does not support robustness, the SETUP message it forwards does not have the supportRobustness field. When the SETUP message reaches EP-2, it responds by sending a CONNECT message and includes the supportRobustness field. However, when the message reaches GK-2, the supportRobustness field is dropped. When the CONNECT message reaches GK-1, it has two choices depending on its local policy. It can either forward the CONNECT message transparently or modify it to include the supportRobustness field. If the latter case is chosen, GK-1 behaves as a proxy for all its non-robust nodes and, therefore, will generate all robustness–related messages on their behalf.

If EP-1 thinks of EP-2 as a robust node, then it sends out a RELEASE message to release a call and waits for a RELEASE COMPLETE message. When GK-1 receives the RELEASE message, it generates a RELEASE COMPLETE to the EP-1 and forwards a RELEASE COMPLETE message to GK-2. When EP-1 receives the RELEASE COMPLETE message, it clears the call.

The GK-1 handles the H.245 messages in a similar manner.

Case 4: When both the GKs do not support robustness, but both the endpoints do.

This scenario arises when EP-1 and EP-2 support robustness, but GK-1 and GK-2 do not. In this case, the call cannot be made robust as the intermediate entities do not support robustness and, therefore, cannot recognize any robustness-related messages.

Case 5: When both the endpoints don’t support robustness.

This scenario arises when EP-1 and EP-2 do not support robustness, but GK-1 and GK-2 do not. In this case, since the calling endpoint itself does not support robustness procedures, the call cannot be made robust.

Case 6: When no entity supports robustness. (trivial case)

The call is not robust.

Changes to the RAS/H.225/H.245 Standard

The above proposal will result in the following changes to the existing standards:

 Proposed changes to the H.225 Standard

The following fields must be added to the SETUP and CONNECT message.

[Begin Addition]

Setup-UUIE::=SEQUENCE

{

 …

 supportRobustness BOOLEAN

}

Connect-UUIE ::=SEQUENCE

{

…

 supportRobustness BOOLEAN

}

[End Addition]

A new message called “Release” must be added as shown below.

[Begin Addition]

H323-UU-PDU ::= SEQUENCE

{

h323-message-body CHOICE

{

.

 .

 .

 progress Progress-UUIE,

 empty NULL,

 release Release-UUIE

},

nonStandardData

NonStandardParameter OPTIONAL,

...,

h4501SupplementaryService
SEQUENCE OF OCTET STRING OPTIONAL,
h245Tunneling

BOOLEAN,

h245Control

SEQUENCE OF OCTET STRING OPTIONAL,

nonStandardControl

SEQUENCE OF NonStandardParameter OPTIONAL

}

where

Release-UUIE ::=SEQUENCE

{

 protocolIdentifier
ProtocolIdentifier,

 reason

ReleaseCompleteReason OPTIONAL,

 callIdentifier

CallIdentifier

...,

}

[End Addition]

Proposed changes to the H.245 Standard
The following changes must made to the H.245 ASN syntax (section 6 of H.245 specifications).

[Begin Modification]

MultimediaSystemControlMessage::=CHOICE

{

request
RequestMessage,

response
ResponseMessage,

command
CommandMessage,

indication
IndicationMessage,

...

 confirm ConfirmMessage

}

where

ConfirmMessage ::=SEQUENCE

{

 sequenceNumber INTEGER (0…255)

 …

}
[End Modification]

The following is an example of changes to a Command message.

[Begin Modification]

CommunicationModeCommand
::=SEQUENCE

{

communicationModeTable
SET SIZE(1..256) OF CommunicationModeTableEntry,

...

 sequenceNumber INTEGER (0…255) OPTIONAL

}

[End Modification]

The following is an example of changes to an Indication message.

[Begin Modification]

UserInputIndication
::=CHOICE

{

nonStandard
NonStandardParameter,

alphanumeric
GeneralString,

...,

userInputSupportIndication
CHOICE

{

nonStandard
NonStandardParameter,

basicString
NULL,

iA5String
NULL,

generalString
NULL,

...

},

signal

SEQUENCE

{

signalType
IA5String (SIZE (1) ^ FROM ("0123456789#*ABCD!")),

duration
INTEGER (1..65535) OPTIONAL, -- milliseconds

rtp

SEQUENCE

{

timestamp
INTEGER (0..4294967295) OPTIONAL,

expirationTime
INTEGER (0..4294967295) OPTIONAL,

logicalChannelNumber
LogicalChannelNumber,

...

} OPTIONAL,

...

},

signalUpdate
SEQUENCE

{

duration
INTEGER (1..65535), -- milliseconds

rtp

SEQUENCE

{

logicalChannelNumber
LogicalChannelNumber,

...

} OPTIONAL,

...

}

 sequenceNumber INTEGER (0…255) OPTIONAL

}

[End Modification]

(GK2 crashes after sending Msg Ack but before processing Msg and forwarding Msg to EP1)

Msg Ack

Msg Ack

Msg

Msg

GK1

EP1

GK2

EP2

R

Release

Release Complete

Release

Release

R

GK1

EP1

GK2

NR

EP2

R

R

Release Complete

Release Complete

Release

Release

R

GK1

EP1

GK2

NR

EP2

R

NR

Release Complete

Release Complete

Release

Release Complete

R

GK1

EP1

GK2

NR

EP2

R

Release Complete

Release Complete

