
ITU - Telecommunication Standardization Sector
APC-1772
STUDY GROUP 16

 April 28, 2000
Q.12-14/16 Rapporteurs Meeting

Japan, 15-19 May 2000

SOURCE*:

Motorola

TITLE:
On H.323 Robustness Architecture Using DDP and SCTP

PURPOSE:
Discussion

Abstract: This contribution will illustrate, with an H.323 call example, the use of DDP and SCTP for robustness purposes in an H.323 system. It will give in brief: 1) an architectural overview of an H.323 system using DDP/SCTP, 2) a view of the necessary protocol stacks in the respective H.323 nodes, and, 3) fail-over scenarios of an example H.323 call with two gatekeepers and two endpoints.

1. References

[1] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and, V. Paxson, "Simple Control Transmission Protocol," <draft-ietf-sigtran-sctp-09.txt>, IETF, April, 2000.

[2] R. R. Stewart, and, Q. Xie, "Data Distribution Protocol (DDP),” <draft-xie-stewart-sigtran-ddp-01.txt>, IETF, April, 2000.

2. Protocol Stacks

[image: image1.wmf]Endpoint

-

1

Endpoint

-

2

Gatekeeper

-

1

Gatekeeper

-

2

ARQ

ACF

Set

-

Up

CPG

Alert

Connect

ARQ

ACF

Set

-

Up

Set

-

Up

CPG

CPG

Alert

Alert

Connect

Connect

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

In general, an H.323 application using DDP/SCTP [1-2] for fault tolerance will have the following protocol stack:

This can provide fast fail-over, transparent to the upper layer application, at both link and session levels:

1) l
ink level (SCTP) – multi-homing support, surviving network failures

2) session level (DDP) – server pool support (2N, N+K, etc.), surviving process/node failures

In addition, DDP provides:

· location transparency

· load sharing

· Plug-n-Play, i.e., hot scalability

· avoid single point of failure
3. An Architectural View of an H.323 System
[image: image2.wmf]H.323 Applications

IP

SCTP

DDP

ENRP

H.323 Applications

IP

SCTP

DDP

ENRP

The following picture shows an H.323 system built upon DDP/SCTP model.

In the system, all the H.323 components, including the GW1, GW2, and GKs employ the DDP/SCTP stacks as shown in the previous section. In this example, we assume that the H.323 gatekeeper is implemented as a server pool (the diagram depicts the internals of the server pool), while the gateways may or may not be implemented as server pools.

As shown in the diagram, inside the gatekeeper server pool we have multiple instances of functionally identical H.323 gatekeepers, GK, GK’, … GK”. The GK instances share call state and other call recovery critical information among themselves using an internal distributed bulletin board. The mechanism and implementation of the distributed bulletin board is vendor specific and thus out of the scope of either DDP or SCTP (the bulletin board, however, can use DDP/SCTP to gain fault tolerance and scalability for itself).

All the DDP/SCTP nodes, including GWs and GKs, rely on either a single ENRP namespace server cloud or a group of bridged ENRP clouds for name registration and name translation services [2]. To form the gatekeeper server pool, all GK instances register to the ENRP namespace under the same name. However, each individual GK instance may choose to register with a different load handling capability.

Each H.323 call message will be delivered by DDP to one of the GK instance in the server pool. The selection of the receiver GK instance is based on both the load sharing policy in effect and the current status of each GK instances in the server pool. It is sometimes very desirable to have all the H.323 signaling messages related to a call be handled by the same GK instance for the entire life cycle of the call, and only let another GK instance take over the call in case the original handler dies. We call this relationship between the call and the server instance “loose binding”. DDP is designed to support this type of “loose binding” relationship very easily [2].

Moreover, when a GK instance is handling a call, it should publish to the distributed bulletin board (i.e., “checkpoint”) all critical call state information every time the call reaches a certain stage in its life cycle. This information will help the alternate GK instance to recover the call in case the original call handler crashes.

In the diagram, the red arrows represent H.323 signaling traffic, the green arrows represent ENRP name registration and translation messages, while the blue arrows represent the check-pointing traffic inside the server pool.

4. An Example H.323 Call

For the purposes of describing a call I will use the signaling flows in the following diagram.
[image: image3.wmf]Distributed Bulletin

GW 1

GW 2

ENRP Namespace

Server Cloud

GK

GK’

GK”

Server Pool

GK

GK’

GK”

Distributed Bulletin

Distributed Bulletin

GW 1

GW 2

ENRP Namespace

Server Cloud

GK

GK’

GK”

Server Pool

GK

GK’

GK”

Please note that my references in this call flow are quite old and I extrapolated the second gatekeeper. There may be some differences in the way the current H.323 specification would have a call flow, but the point here is to emphasis how DDP/SCTP would be used. Even if minor items are incorrect in the above figure, this does not invalidate the example.

4.1 General Description:

The call starts with Endpoint-1 requesting bandwidth. The endpoint would in this case use DDP to query a gatekeeper, known by a name or possibly by a well known IP address and port. In either case, an ENRP name translation query (not shown) would propagate to the endpoint the set of all gatekeepers (primary and any redundant) in the server pool. This information would be populated into a DDP layer local cache in Endpoint-1 for future reference in case of a failure. This same caching would occur in all DDP endpoints in the chain transparent to the call itself.

Note we now hit point (A), at this step the gatekeeper allocates bandwidth and checkpoints this bandwidth utilization information message into a “bulletin board” area. This “bulletin board” area could be any of the following:

· A piece of distributed shared memory being maintained by a separate subsystem,

· A piece of reflective memory specifically built for this purpose,

· A distributed commercial database,

· Some other creative invention.

Please note that the point here is that, it is some way that the redundant/peer gatekeepers have of sharing call state. Any mechanism currently, or in the future, conceived of to share call state can be used.

Gatekeeper-1 populates its ARQ related state and pushes this information to the “bulletin board” and responds to the request in the normal manner, i.e. with an ACF.

Endpoint-1 now reacts and sends the set-up message to Gatekeeper-1. Upon reception of the set-up message Gatekeeper-1 selects the next gatekeeper, Gatekeeper-2, and forwards on its set-up, pushing the state information about the call (point B), possibly tied in some way to the previous information (perhaps with some form of cross-reference i.e. Call-X is using Y bandwidth represented by the ARQ information). After pushing the information at point B, Gatekeeper-1 sends out the call proceeding message to Endpoint-1.

Gatekeeper-2 receives the set-up message from its peer gatekeeper selects the destination endpoint forwards off the set-up and pushes state information at point C for the call. After pushing its state to the bulletin board, it sends Gatekeeper-1 a call proceeding message.

Endpoint-2, upon reception of the set-up, sends back a call proceeding message and asks its gatekeeper for bandwidth with its own ARQ message.

This causes Gatekeeper-2 to allocate bandwidth, push state at point D and send back the ACF message. Upon reception of which, Endpoint-2 sends an Alerting message to Gatekeeper-2.

At reception of the Alerting message, Gatekeeper-2 would push a small update to its bulletin board (point E), i.e. that the call is in Alerting, and forward on an Alerting message to Gatekeeper-1.

Gatekeeper-1 will repeat the same procedure, updating its state at point F and forwarding on the Alerting message.

Endpoint-2 at some point answers the call, sending a Connect message to Gatekeeper-2. Gatekeeper-2, upon reception of the Connect message, will push another small update to the state at point G indicating that the call is now in an answered state and forward on the connect message to Gatekeeper-1.

Upon reception of the Connect message, Gatekeeper-1 will perform the same operation, saving its state at point H and sending the connect message on to Endpoint-1.

4.2 Failure Scenarios

The above descriptions assume the maximum level of redundancy and state/call preservation. In this scenario any failure of either Gatekeeper becomes transparent to either endpoint. If a failure occurs, the message would be re-routed by DDP to an alternate. The alternate would need to take the following actions on any message it received that it did not have a call object/block for:

· Look up the call in the “bulletin board”,

· Pull the state information and construct a call control block or object for the call,

· Continue processing the message on behalf of the dead peer.

Endpoints become completely transparent to failure scenarios. No knowledge is placed in the endpoint itself (other than DDP) to recover from a Gatekeeper failure.

4.3 State Saving Issues

As stated above, the example assumes a maximum state saving model. In this mode updates to state would need to be minimized to the smallest amount of information possible. In particular, state should be limited to the smallest set of information necessary to re-construct the call AND updates should be as small as possible. In some cases an operator may not wish to have this level of redundancy. To achieve a robust system with less state, the following state sharing points could be eliminated:

· At points A and points D – If the gatekeeper uses some other methodology to calculate bandwidth utilization (besides tracking the number of calls by count) these steps could be completely skipped with no harm. It may be that the operator has NO concern for admission control and its gatekeepers do not perform this, in these cases this step is not necessary.

· At points F and E – These points are optional in that they may not provide any information worth saving, i.e. the call is ringing versus still setting up.

· At points B and C – If the operator is NOT interested in saving anything but stable calls, these points can be eliminated. In this case, any calls that were setting up would be lost if a failure did occur.

Trade-offs, such as the above, are outside the scope of using DDP/SCTP and are strictly an operator/manufacture decision as to how much state may be saved by a given implementation and what controls/options the operator may have.

Contact :
Randy Stewart, +1 847 632-7438, stewrtrs@cig.mot.com
 Qiaobing Xie, +1 847 632-3028, xieqb@cig.mot.com

_1018268946.ppt

Endpoint-1

Endpoint-2

Gatekeeper-1

Gatekeeper-2

ARQ

ACF

Set-Up

CPG

Alert

Connect

ARQ

ACF

Set-Up

Set-Up

CPG

CPG

Alert

Alert

Connect

Connect

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

